IPC-A-600F

Acceptability of Printed Boards

ANSI/IPC-A-600F
November 1999
A standard developed by IPC
The Principles of Standardization

In May 1995 the IPC’s Technical Activities Executive Committee adopted Principles of Standardization as a guiding principle of IPC’s standardization efforts.

Standards Should:
- Show relationship to Design for Manufacturability (DFM) and Design for Engineering (DFE)
- Minimize time to market
- Contain simple (simplified) language
- Just include spec information
- Focus on end product performance
- Include a feedback system on use and problems for future improvement

Standards Should Not:
- Inhibit innovation
- Increase time-to-market
- Keep people out
- Increase cycle time
- Tell you how to make something
- Contain anything that cannot be defended with data

Notice

IPC Standards and Publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards and Publications shall not in any respect preclude any member or nonmember of IPC from manufacturing or selling products not conforming to such Standards and Publication, nor shall the existence of such Standards and Publications preclude their voluntary use by those other than IPC members, whether the standard is to be used either domestically or internationally.

Recommended Standards and Publications are adopted by IPC without regard to whether their adoption may involve patents on articles, materials, or processes. By such action, IPC does not assume any liability to any patent owner, nor do they assume any obligation whatever to parties adopting the Recommended Standard or Publication. Users are also wholly responsible for protecting themselves against all claims of liabilities for patent infringement.

IPC Position Statement on Specification Revision Change

It is the position of IPC’s Technical Activities Executive Committee (TAEC) that the use and implementation of IPC publications is voluntary and is part of a relationship entered into by customer and supplier. When an IPC standard/guideline is updated and a new revision is published, it is the opinion of the TAEC that the use of the new revision as part of an existing relationship is not automatic unless required by the contract. The TAEC recommends the use of the lastest revision. 

Adopted October 6, 1998

Why is there a charge for this standard?

Your purchase of this document contributes to the ongoing development of new and updated industry standards. Standards allow manufacturers, customers, and suppliers to understand one another better. Standards allow manufacturers greater efficiencies when they can set up their processes to meet industry standards, allowing them to offer their customers lower costs. 

IPC spends hundreds of thousands of dollars annually to support IPC’s volunteers in the standards development process. There are many rounds of drafts sent out for review and the committees spend hundreds of hours in review and development. IPC’s staff attends and participates in committee activities, typesets and circulates document drafts, and follows all necessary procedures to qualify for ANSI approval.

IPC’s membership dues have been kept low in order to allow as many companies as possible to participate. Therefore, the standards revenue is necessary to complement dues revenue. The price schedule offers a 50% discount to IPC members. If your company buys IPC standards, why not take advantage of this and the many other benefits of IPC membership as well? For more information on membership in IPC, please visit www.ipc.org or call 847/790-5372.

Thank you for your continued support.

©Copyright 1999. IPC, Northbrook, Illinois. All rights reserved under both international and Pan-American copyright conventions. Any copying, scanning or other reproduction of these materials without the prior written consent of the copyright holder is strictly prohibited and constitutes infringement under the Copyright Law of the United States.
ANSI/IPC-A-600F

Acceptability of Printed Boards

Developed by the IPC-A-600 Task Group (7-31a) of the Product Assurance Committee (7-30) of IPC

Users of this standard are encouraged to participate in the development of future revisions.

Contact:

IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798
Any standard involving a complex technology draws material from a vast number of sources. While the principal members of the A-600 Task Group (7-31a) of the Product Assurance Committee (7-30) are shown below, it is not possible to include all of those who assisted in the evolution of this standard. To each of them, the members of IPC extend their gratitude. A special note of gratitude goes to Floyd L. Gentry of Sandia National Laboratories, Albuquerque, for chairing the A-600 Task Group during the evolution from the E revision of the document to the current F revision.

Chairman
Larry R. Breeden
Nelco Technology, Inc.

Vice-Chairman
Ken Sundquist
Siemens Energy & Automation, Inc.

E. Berry, Delphi Delco Electronics Systems
Gerald Leslie Bogert, Bechtel Plant Machinery, Inc.
Ronald J. Brock, NSWC - Crane
Lewis Burnett, Honeywell Inc.
Dennis J. Cantwell, Printed Circuits Inc.
Byron Case, L-3 Communications
Alan S. Cash, Northrop Grumman
W. Glenn Colescott, Delphi Delco Electronics Systems
Dan Colvin, Tyco PCG/Logan Division
David J. Corbett, Defense Supply Center Columbus
Paul B. Deschamps, INNOVEX Inc.
Michele J. DiFranza, The M'tre Corp.
Norman Dill
C. D. Dupriest, Lockheed Martin
Nancy Dutcher, U.S. Assemblies Hallstead Inc.
Bill Eccles, Creation Technologies
Werner Engelman, Engelman Associates, L.C.
Mary Beth Fletcher, IBM Material Distribution Center
Mahendra S. Gandhi, Raytheon Systems Company
David C. Gendreau, DMG Engineering
Constantino J. Gonzalez, ACME, Inc.
Richard T. Grannells, United Technologies
Jennifer A. Gray, Siemens Telecom Networks
Michael R. Green, Lockheed Martin Missiles & Space
Lisa A. Greenleaf, Teradyne Connection Systems
David L. Hawken, IBM Corp.
Adam E. Hen, Celestica International
Steven A. Herrberg, Raytheon Systems
Ralph J. Hersey, Ralph Hersey & Associates
Michael E. Hill, Viasystems Technologies Corp.
Phillip E. Hinton, Hinton 'PWB' Engineering
Jin Hong, Dongguan Shengyi Laminate Co. Ltd.
Lorraine Hook, Dynamic Details, Inc.
F. D. Bruce Houghton, Celestica International Inc.
Cindy J oncas, Coretec Inc.
Ted J. Jones, NSWC - Crane
Donald Karp, Trace Laboratories - Central
Clarence W. Knapp, Litton Guidance & Control Systems
Stephen Korchynsky, Lockheed Martin
Leo P. Lambert, EPTAC Corporation
Clifford H. Lamson, Harris Corporation
Roger H. Landolt, Enthorne-OMI Inc.
Douglas M. Laws, Viasystems Technologies Corp.
LindaAnn M. Lo Cicero, Mutoh America
A. Scott Mackie, Proto Circuits Inc.
Wesley R. Malewicz, Siemens Medical Systems Inc.
Susan S. Mansilla, Robisan Laboratory
Paul W. Mason, Pacific Testing Laboratories
William Dean May, NSWC - Crane
Gerry McIntyre, Jabil Circuit Ltd.
Tim Mendenhall, Hitachi Computer Products (America)
Renée J. Michalkiewicz, Trace Laboratories - East
James J. Moffitt, Moffitt Consulting Services
Hue Morris, Lockheed Martin Missiles & Space
Suzanne F. Nachbor, Honeywell Inc.
Bob Neves, Microtek Laboratories
Benny Nilsson, Ericsson Radio Systems AB
Riley L. Northam, EMPF/ACI
Debora L. Obitz, Trace Laboratories - East
Scott S. Oppenhauser, Trace Laboratories - East
Bruce Panke
Ron Payne, Primex Aerospace
Scott Poole, MCMS
David Posner, Gamma-Metrics
Dr. Donald G. Pucci, Gould Electronics
Mona L. Rudolph, Dynamic Details, Inc.
Roddy L. Scherff, Raytheon Systems Company
Kevin Schuld, Denso Wireless Systems
Lowell Sherman, Defense Supply Center Columbus
Hans L. Shin, Pacific Testing Laboratories
Rae Shyne, Protonet Circuits Southwest Inc.
Dawn Skåla, Sandia Laboratories Livermore
Joseph T. Slanina, AlliedSignal Aerospace
Grant W. Smedley, III, Raytheon Systems Company
Frank Stetson, Training & Certification Specialists
Kevin Stetson, Training & Certification Specialists
Daniel R. Tetter, Hughes Network Systems
Ronald E. Thompson, NSWC - Crane
George C. Toman, Circuit Center Inc.
Dwayne J. Tucker, Boeing Aircraft & Missiles
Robert Vanech
Rob Walls, C.I.D., PIEK Training & Organisational Support
William W. Ward, Raytheon Systems Company
Thomas B. Woodward, Raytheon Systems Company
Fonda B. Wu, Raytheon Systems Company
Dr. Jih Yuan, Lucent Technologies

PWB on front and back cover photo courtesy of U.S. Robotics

November 1999
# Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>i</td>
</tr>
<tr>
<td>1.0 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Purpose</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Approach To This Document</td>
<td>1</td>
</tr>
<tr>
<td>1.4 Classification</td>
<td>1</td>
</tr>
<tr>
<td>1.5 Acceptance Criteria</td>
<td>2</td>
</tr>
<tr>
<td>1.6 Reference</td>
<td>3</td>
</tr>
<tr>
<td>1.7 Dimensions And Tolerances</td>
<td>4</td>
</tr>
<tr>
<td>1.8 Terms And Definitions</td>
<td>4</td>
</tr>
<tr>
<td>1.9 Workmanship</td>
<td>4</td>
</tr>
<tr>
<td>2.0 Externally Observable Characteristics</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Board Edges</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1 Burrs</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1.1 Nonmetallic Burrs</td>
<td>6</td>
</tr>
<tr>
<td>2.1.1.2 Metallic Burrs</td>
<td>7</td>
</tr>
<tr>
<td>2.1.2 Nicks</td>
<td>8</td>
</tr>
<tr>
<td>2.1.3 Haloing</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Base Material</td>
<td>10</td>
</tr>
<tr>
<td>2.2.1 Weave Exposure</td>
<td>11</td>
</tr>
<tr>
<td>2.2.2 Weave Texture</td>
<td>12</td>
</tr>
<tr>
<td>2.2.3 Exposed/Disrupted Fibers</td>
<td>13</td>
</tr>
<tr>
<td>2.2.4 Pits and Voids</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Base Material Subsurface</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1 Measling</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2 Crazing</td>
<td>19</td>
</tr>
<tr>
<td>2.3.3 Delamination/Blister</td>
<td>20</td>
</tr>
<tr>
<td>2.3.4 Foreign Inclusions</td>
<td>21</td>
</tr>
<tr>
<td>2.4 Solder Coatings and Fused Tin Lead</td>
<td>22</td>
</tr>
<tr>
<td>2.4.1 Nonwetting</td>
<td>22</td>
</tr>
<tr>
<td>2.4.2 Dewetting</td>
<td>23</td>
</tr>
<tr>
<td>2.5 Holes – Plated-Through – General</td>
<td>24</td>
</tr>
<tr>
<td>2.5.1 Nodules/ Burrs</td>
<td>24</td>
</tr>
<tr>
<td>2.5.2 Pink Ring</td>
<td>25</td>
</tr>
<tr>
<td>2.5.3 Voids - Copper Plating</td>
<td>26</td>
</tr>
<tr>
<td>2.6 Holes – Unsupported</td>
<td>28</td>
</tr>
<tr>
<td>2.6.1 Haloing</td>
<td>28</td>
</tr>
<tr>
<td>2.7 Printed Contacts</td>
<td>29</td>
</tr>
<tr>
<td>2.7.1 Surface Plating - General</td>
<td>29</td>
</tr>
<tr>
<td>2.7.2 Burrs on Edge-Board Contacts</td>
<td>30</td>
</tr>
<tr>
<td>2.7.3 Adhesion of Overplate</td>
<td>31</td>
</tr>
<tr>
<td>2.8 Marking</td>
<td>32</td>
</tr>
<tr>
<td>2.8.1 General</td>
<td>33</td>
</tr>
<tr>
<td>2.8.2 Etched Marking</td>
<td>34</td>
</tr>
<tr>
<td>2.8.3 Screened or Ink Stamped Marking</td>
<td>35</td>
</tr>
<tr>
<td>2.9 Solder Resist (Solder Mask)</td>
<td>36</td>
</tr>
<tr>
<td>2.9.1 Coverage Over Conductors</td>
<td>37</td>
</tr>
<tr>
<td>2.9.2 Registration to Holes (All Finishes)</td>
<td>38</td>
</tr>
<tr>
<td>2.9.3 Registration to Other Conductive Patterns</td>
<td>39</td>
</tr>
<tr>
<td>2.9.3.1 Ball Grid Array (Solder Resist-Defined Lands)</td>
<td>40</td>
</tr>
<tr>
<td>2.9.3.2 Ball Grid Array (Copper-Defined Lands)</td>
<td>41</td>
</tr>
<tr>
<td>2.9.3.3 Ball Grid Array (Solder Dam)</td>
<td>42</td>
</tr>
<tr>
<td>2.9.4 Blisters/Delamination</td>
<td>43</td>
</tr>
<tr>
<td>2.9.5 Adhesion (Flaking or Peeling)</td>
<td>44</td>
</tr>
<tr>
<td>2.9.6 Skip Coverage</td>
<td>45</td>
</tr>
<tr>
<td>2.9.7 Waves/Wrinkles/Ripples</td>
<td>46</td>
</tr>
<tr>
<td>2.9.8 Tenting (Via Holes)</td>
<td>47</td>
</tr>
<tr>
<td>2.9.9 Soda Strawing</td>
<td>48</td>
</tr>
<tr>
<td>2.9.10 Thickness</td>
<td>49</td>
</tr>
<tr>
<td>2.10 Pattern Definition - Dimensional</td>
<td>50</td>
</tr>
<tr>
<td>2.10.1 Conductor Width and Spacing</td>
<td>50</td>
</tr>
<tr>
<td>2.10.1.1 Conductor Width</td>
<td>50</td>
</tr>
<tr>
<td>2.10.1.2 Conductor Spacing</td>
<td>51</td>
</tr>
<tr>
<td>2.10.2 External Annular Ring - Measurement</td>
<td>52</td>
</tr>
<tr>
<td>2.10.3 External Annular Ring - Supported Holes</td>
<td>53</td>
</tr>
<tr>
<td>2.10.4 Annular Ring - Unsupported Holes</td>
<td>54</td>
</tr>
<tr>
<td>2.11 Flatness</td>
<td>56</td>
</tr>
<tr>
<td>3.0 Internally Observable Characteristics</td>
<td>57</td>
</tr>
</tbody>
</table>

IPC-A-600F November 1999
Table of Contents

3.1 Dielectric Materials ...................................... 58
   3.1.1 Laminate Voids (Outside Thermal Zone) ..................... 58
   3.1.2 Registration/Conductors to Holes .......................... 60
   3.1.3 Clearance Hole, Unsupported, to Power/Ground Planes .... 61
   3.1.4 Delamination/Blister ........................................ 62
   3.1.5 Etchback ..................................................... 63
      3.1.5.1 Etchback ..................................................... 64
      3.1.5.2 Negative Etchback ....................................... 65
   3.1.6 Dielectric Material, Clearance, Metal Planes ............ 66
   3.1.7 Layer-to-Layer Spacing ................................... 67
   3.1.8 Resin Recession ............................................. 68

3.2 Conductive Patterns - General ........................... 69
   3.2.1 Etching Characteristics .................................... 70
   3.2.2 Print & Etch ................................................ 72
   3.2.3 Surface Conductor Thickness (Foil Plus Plating) ........... 73
   3.2.4 Foil Thickness - Internal Layers ........................... 73

3.3 Plated-Through Holes - General .......................... 74
   3.3.1 Annular Ring - Internal Layers ............................... 75
   3.3.2 Lifted Lands - (Cross-Sections) ............................. 77
   3.3.3 Plating Crack - (Internal Foil) .............................. 78
   3.3.4 Plating Crack ................................................ 79
   3.3.5 Plating Crack - (Barrel) ..................................... 80
   3.3.6 Plating Crack - (Corner) ..................................... 81
   3.3.7 Plating Nodules ............................................. 82
   3.3.8 Copper Plating Thickness - Hole Wall ....................... 83
   3.3.9 Plating Voids ............................................... 84
   3.3.10 Solder Coating Thickness (When Specified) ............... 85
   3.3.11 Wicking .................................................... 86
   3.3.11.1 Wicking, Clearance Holes ............................... 87
   3.3.12 Innerlayer Separation - Vertical (Axial) Microsection ... 88
   3.3.13 Innerlayer Separation - Horizontal (Transverse) Microsection ... 89
   3.3.14 Resin Fill .................................................. 90

3.4 Plated-Through Holes - Drilled ............................ 91
   3.4.1 Burrs ....................................................... 92
   3.4.2 Nailheading ................................................ 93

3.5 Plated-Through Holes - Punched ........................... 94
   3.5.1 Roughness and Nodules ...................................... 95
   3.5.2 Flare ...................................................... 96

4.0 Miscellaneous .................................................. 97

4.1 Flexible And Rigid-Flex Printed Wiring .................. 97
   4.1.1 Coverfilm Separations ...................................... 98
   4.1.2 Coverlayer Coverage ....................................... 99
   4.1.3 Access Hole Registration for Coverlayer and Stiffeners 100
   4.1.4 Plated Hole Criteria ....................................... 101
   4.1.5 Stiffener Bonding ......................................... 102
   4.1.6 Transition Zone, Rigid Area to Flexible Area .......... 103
   4.1.7 Solder Wicking/Plating Migration Under Coverlayer .... 104
   4.1.8 Laminate Integrity ......................................... 105
   4.1.8.1 Laminate Integrity - Flexible Printed Wiring .......... 106
   4.1.8.2 Laminate Integrity - Rigid-Flex Printed Wiring ...... 107
   4.1.9 Etchback (Type 3 and Type 4 Only) ....................... 108
   4.1.10 Smear Removal (Type 3 and 4 Only) ...................... 109
   4.1.11 Trimmed Edges/Edge Delamination ....................... 110

4.2 Metal Core Printed Boards .................................. 111
   4.2.1 Type Classifications ....................................... 112
   4.2.2 Spacing Laminated Type ................................... 113
   4.2.3 Insulation Thickness, Insulated Metal Substrate ........ 114
   4.2.4 Insulation Material Fill, Laminated Type Metal Core .... 115
   4.2.5 Cracks in Insulation Material Fill, Laminated Type .... 116
   4.2.6 Core Bond to Plated-Through Hole Wall .................. 117

4.3 Flush Printed Boards ......................................... 118
   4.3.1 Flushness of Surface Conductor .......................... 118

5.0 Cleanliness Testing ........................................... 119

5.1 Solderability Testing .......................................... 120
   5.1.1 Plated-Through Holes ....................................... 121

5.2 Electrical Integrity ............................................ 122

Table of Contents
iv IPC-A-600F November 1999
1.1 SCOPE
This document describes the preferred, acceptable, and non-conforming conditions that are either externally or internally observable on printed boards. It represents the visual interpretation of minimum requirements set forth in various printed board specifications, i.e.; IPC-6010 series, ANSI/J-STD-003, etc.

1.2 PURPOSE
The illustrations in this document portray specific criteria relating to the heading and subheading of each page, with brief descriptions of the acceptable and nonconforming conditions for each product class. (See 1.4 Classification). The visual quality acceptance criteria are intended to provide proper tools for the evaluation of visual anomalies. The illustrations and photographs in each situation are related to specific requirements. The characteristics addressed are those that can be evaluated by visual observation and/or measurement of visually observable features.

Supported by appropriate user requirements, this document should provide effective visual criteria to quality assurance and manufacturing personnel.

This document cannot cover all of the reliability concerns encountered in the printed board industry; therefore, attributes not addressed in this issue shall be agreed upon between user and supplier. The value of this document lies in its use as a baseline document that may be modified by expansions, exceptions, and variations which may be appropriate for specific applications.

This is a document for minimum acceptability requirements and is not intended to be used as a performance specification for printed board manufacture or procurement.

In the event of a conflict between the requirements of this document and the applicable product performance specification, the following precedence shall be used:

a) Approved Printed Board Procurement Document
b) Applicable Performance Specification
c) Generic Specifications
d) Acceptability of Printed Boards (IPC-A-600)

When making accept and/or reject decisions, the awareness of documentation precedence must be maintained.

This document is a tool for observing how a product may deviate due to variation in processes. Refer to IPC-PC-90, “General Requirements for Implementation of Statistical Process Control.”

IPC-A-600 provides a useful tool for understanding and interpreting Automated Inspection Technology (AIT) results. AIT may be applicable to the evaluation of many of the dimensional characteristics illustrated in this document. Refer to IPC-AI-642, “User’s Guidelines for Automated Inspection of Artwork, Innerlayers, and Unpopulated PWBs.”

1.3 APPROACH TO THIS DOCUMENT
Characteristics are divided into two general groups:
• Externally Observable (section 2.0)
• Internally Observable (section 3.0)

“Externally observable” conditions are those features or imperfections which can be seen and evaluated on or from the exterior surface of the board. In some cases, such as voids or blisters, the actual condition is an internal phenomenon and is detectable from the exterior.

“Internally observable” conditions are those features or imperfections that require microsectioning of the specimen or other forms of conditioning for detection and evaluation. In some cases, these features may be visible from the exterior and require microsectioning in order to assess acceptability requirements.

Specimens should be illuminated during evaluation to the extent needed for effective examination. The illumination should be such that no shadow falls on the area of interest except those shadows caused by the specimen itself. It is recommended that polarization and/or dark field illumination be employed to prevent glare during the examination of highly reflective materials.

1.4 CLASSIFICATION
This document recognizes that the acceptable extent of imperfection for specific characteristics of printed boards may be determined by the intended end use. For this reason, three general classes have been established based on functional reliability and performance requirements.

Class 1 — General Electronic products: Includes consumer products, some computer and computer peripherals suitable for applications where cosmetic imperfections are not important, and the major requirement is function of the completed printed board.

Class 2 — Dedicated Service Electronic Products: Includes communications equipment, sophisticated business machines, and instruments where high performance and extended life is required, and for which uninterrupted service is desired, but is not critical. Certain cosmetic imperfections are allowed.

Class 3 — High Reliability Electronics Products: Includes equipment and products where continued performance or performance on demand is critical. Equipment downtime cannot be tolerated, and the equipment must function when required, such as life support systems or flight control sys-
tems. Printed boards in this class are suitable for applications where high levels of assurance are required and service is essential.

Acceptability criteria in this document have been separated so that printed board product may be evaluated to any one of the three classes. The use of one class for a specific characteristic does not mean that all other characteristics must meet the same class. Selection should be based on minimum need. The customer has the ultimate responsibility for identifying the class to which the product is evaluated. Thus, accept and/or reject decisions must be based on applicable documentation such as contracts, procurement documentation, specifications, standards and reference documents.

1.5 ACCEPTANCE CRITERIA

Most of the illustrations and photographs included in this document represent three levels of quality for each specific characteristic: i.e., Target Condition, Acceptable and Nonconforming. The text included with each level establishes the "Acceptance Criteria" for each class of product.

Target Condition in many cases is close to perfect. While this is the desired condition it is not always achievable and may not be necessary to ensure the reliability of the board in its service environment.

Acceptable indicates that the condition depicted, while not necessarily perfect, will maintain the integrity and reliability of the board in its service environment. The acceptable condition is considered acceptable for at least one or more classes but may not be acceptable for all classes, as specified by the associated acceptance criteria.

Nonconforming indicates that the condition depicted may be insufficient to ensure the reliability of the board in its service environment. The nonconforming condition is considered unacceptable for at least one or more classes of product but may be acceptable for other classes as specified by the associated acceptance criteria.

The target, acceptable and nonconforming conditions depicted herein and the associated acceptance criteria are intended to represent typical industrial practices. Requirements of individual product designs may deviate from these criteria.

The examples shown in the photographs and/or illustrations are sometimes exaggerated to make the referenced imperfection more apparent. The relationship between the text and the examples is not always parallel; it would be difficult to find many cases so specific that they would always match the acceptance criteria. When a photograph or procurement documentation seems incongruous with the criteria in the text, follow the text.

It should also be noted that some of the photographs used may have more than one type of condition on the same example. It is necessary that the users of this document pay particular attention to the subject of each section to avoid misinterpretation.

It should be understood that the first inference to nonconformance given implies that all other conditions of lesser magnitude are acceptable. Thus, a criteria which states a nonconformance condition as 50% of the surface is pitted, for example, implies that anything less than 50% of the surface being pitted is acceptable for that characteristic in that class. Obviously, nonconformance in Class 1 implies nonconformance in Classes 2 and 3; and likewise, nonconformance for Class 2 implies nonconformance in Class 3.

An inspector shall not make the selection as to which class the part under inspection belongs. When making accept and/or nonconformance decisions, the awareness of precedence of documentation must be maintained, i.e., typically contract, procurement documentation, specifications and referenced documents.

In all cases, documentation should be available to the inspector defining to which class the part submitted for inspection belongs.

Procedures and requirements for conducting visual inspections related to this document shall be in accordance with the requirements of the applicable performance specification.

In the event of conflict, the following order of precedence shall apply:
1. Procurement documentation
2. Procurement documentation reflecting the customers detailed requirements
3. Other documents to the extent specified by the customer
4. The end item performance specification such as the IPC-6010 series when invoked by the customer
5. This acceptability document

Printed boards should be of uniform quality and shall conform to the IPC-6010 series.

IPC-6010 series establishes the minimum acceptability requirements for printed boards. This document, IPC-A-600, is a companion and complementary document, providing pictorial interpretation of these requirements.

IPC-A-600 can be used as a support document for inspection. It does not specify frequency of in-process inspection or frequency of end product inspection. Nor is the allowable number of nonconforming process indicators or the number of allowable repair/rework of defects specified.
Visual examination for external attributes shall be conducted at 1.75X (3 diopters); defects, if not readily apparent should be verified by magnifications up to 40X. Dimensional requirements such as spacing or conductor width measurements may require other magnifications and devices including reticles or scales in the instrument that allow an accurate measurement of the specified dimension. Contract or specification may also require other magnifications. The visual inspection/referee should be 1.75X minimum and 10X maximum.

Plated-through holes shall be internally examined for foil and plating integrity at a magnification of 100X. Referee examinations shall be accomplished at a magnification of 200X Automated Inspection Technology (AIT) results. AIT may be applicable to the evaluation of many of the dimensional characteristics illustrated in this document. Refer to IPC-AI-642, “User’s Guidelines for Automated Inspection of Artwork, Innerlayers and Unpopulated PWBs.”

1.6 REFERENCE
The following documents form a part of this document to the extent specified herein. The revision of the document in effect at the time of solicitation shall take precedence.

J-STD-003 Solderability Tests for Printed Boards
IPC-T-50 Terms and Definitions for Interconnecting and Packaging Electronic Circuits
IPC-9191 General Requirements for Implementation of Statistical Process Control.
IPC-D-325 Documentation Requirements for Printed Boards.

IPC-QE/CD-605 Printed Board Quality Evaluation Handbook
IPC-AI-642 User’s Guidelines for Automated Inspection of Artwork, Innerlayers, and Unpopulated PWBs
IPC-SM-782 Surface Mount Design and Land Pattern Standard
2.1.1 Microsectioning, Manual Method
2.2.2 Optical Dimensional Verification
2.2.7 Hole Size Measurement, Plated
2.2.11 Registration, Terminal Pads (Layer to Layer)
2.2.13.1 Thickness, Plating in Holes Microhm Method
2.3.25 Detection and Measurement of Ionizable Surface Contaminants
2.3.26 Ionizable Detection of Surface Contaminants (Dynamic Method)
2.3.38 Surface Organic Contaminant Detection Test
2.3.39 Surface Organic Contaminant Identification Test (Infrared Analytical Method)
2.4.1 Adhesion, Tape Testing
2.4.2 Bow and Twist (Percentage)
2.4.28 Adhesion, Solder Mask (Non-Melting Metals)
2.4.28.1 Adhesion, Solder Resist (Mask), Tape Test Method
2.5.4 Current Carrying Capacity, Multilayer Printed Wiring
2.5.7 Dielectric Withstanding Voltage, PWB
2.5.16 Shorts, Internal on Multilayer Printed Wiring
2.6.10 X-Ray (Radiography), Multilayer Printed Wiring

DOCUMENT RELATIONSHIP – IPC-6010 series/IPC-A-600/IPC-SM-782

<table>
<thead>
<tr>
<th>Document Purpose</th>
<th>Spec. #</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Standard</td>
<td>IPC-2221</td>
<td>Design requirements reflecting three levels of complexity (Levels A, B, and C) indicating finer geometries, greater densities, more process steps to produce the product. Component and assembly process guidelines to assist in the design of the bare board and the assembly where the bare board processes concentrate on land patterns for surface mount and the assembly concentrates on surface mount and through-hole principles which are usually incorporated into the design process and the documentation.</td>
</tr>
<tr>
<td></td>
<td>IPC-SM-782</td>
<td></td>
</tr>
<tr>
<td>End Item Documentation</td>
<td>IPC-D-325</td>
<td>Documentation depicting bare board specific end product requirements designed by the customer or end item assembly requirements. Details may or may not reference industry specifications or workmanship standards as well as customers own preferences or internal requirements.</td>
</tr>
<tr>
<td>End Item Document</td>
<td>IPC-6010 series</td>
<td>Final product requirements for printed boards or final requirements for printed board assemblies depicting minimum end product acceptable characteristics as well as methods for evaluation (test methods), frequency of testing and process control requirements, if applicable.</td>
</tr>
<tr>
<td>Acceptability Document</td>
<td>IPC-A-600</td>
<td>Pictorial interpretative document indicating various characteristics of the board relating to undesirable conditions that exceed the minimum acceptable characteristics indicated by the IPC-6010 series and reflect various out-of-control (nonconforming) conditions.</td>
</tr>
</tbody>
</table>
1.7 DIMENSIONS AND TOLERANCES
All dimensions and tolerances specified herein are applicable only to the end product. Dimensions are expressed in millimeters.

Reference information is shown in parentheses ( ).

1.8 TERMS AND DEFINITIONS
Terms and definitions shall be in accordance with IPC-T-50.

1.9 WORKMANSHIP
Printed boards fabricated to the requirements of this document shall be processed in such a manner as to be uniform in quality and to preclude the introduction of dirt, foreign matter, oil, fingerprints, flux residues, or other contaminants that may affect the life or serviceability of the product. Printed boards shall be free of defects in excess of those allowed by this document. Acceptance of imperfections not specifically covered by this document shall be agreed upon by the user and supplier of the product.
2.0 EXTERNALLY OBSERVABLE CHARACTERISTICS

Introduction

This section addresses those characteristics which are observable from the surface. This includes those characteristics that are external and internal in the printed board but visible from the surface as follows:

• **Surface Imperfections** such as burrs, nicks, scratches, gouges, cut fibers, weave exposure and voids.
• **Subsurface Imperfections** such as foreign inclusions, measling/crazing, delamination, pink ring and laminate voids.
• **Imperfections in Conductive Pattern** such as loss of adhesion, reduction of conductor width or thickness due to nicks, pin-holes, scratches, surface plating or coating defects.
• **Hole Characteristics** such as diameter, misregistration, foreign material, and plating or coating defects.
• **Marking Anomalies** including location, size, readability, and accuracy.
• **Solder Resist Surface Coating Imperfections** such as misregistration, blisters, bubbles, delamination, adhesion, physical damage and thickness.
• **Dimensional Characteristics** including printed board size and thickness, hole size and pattern accuracy, conductor width and spacing, registration and annular ring.

2.1 Board Edges

Imperfections such as burrs, nicks or haloing along the edge of the board are acceptable provided they do not exceed the limits below.

2.1.1 Burrs

Burrs are characterized by small lumps or masses with an irregular shape, convex to a surface, and are a result of a machine process, such as drilling or gouging.
2.1 BOARD EDGES

2.1.1.1 Nonmetallic Burrs

**Target Condition - Class 1, 2, 3**
- Edge conditions - smooth, no burrs.

**Acceptable – Class 1, 2, 3**
- Edge conditions – rough but not frayed.

**Nonconforming – Class 1, 2, 3**
- Edge conditions – frayed with loose burrs.
- Edge conditions - burrs affect fit and function.
2.1 BOARD EDGES

2.1.1.2 Metallic Burrs

Target Condition - Class 1, 2, 3
- Edge condition - smooth, no burrs.

Acceptable - Class 1, 2, 3
- Edge condition - rough but not frayed.

Nonconforming - Class 1, 2, 3
- Edge condition - frayed and loose burrs.
2.1 BOARD EDGES

2.1.2 Nicks

Target Condition – Class 1, 2, 3
• Edge condition – smooth, no nicks.

Acceptable – Class 1, 2, 3
• Edges are rough but not frayed.
• Nicks do not penetrate more than 50% of the distance to the closest conductor or 2.5 mm [0.0984 in] whichever is less.

Nonconforming – Class 1, 2, 3
• Nicks in excess of 50% of the allowable board edge to conductor spacing or 2.5 mm [0.0984 in] whichever is less.
• Frayed edges.
2.1 BOARD EDGES

2.1.3 Haloing

Target Condition – Class 1, 2, 3
• No haloing.

Acceptable – Class 1, 2, 3
• Penetration of haloing does not reduce the unaffected distance from the board edge to the closest conductive pattern by more than 50% or more than 2.5 mm [0.0984 in], whichever is less.

Nonconforming – Class 1, 2, 3
• Penetration of haloing reduces the unaffected distance from the board edge to the closest conductive pattern by more than 50% or more than 2.5 mm [0.0984 in], whichever is less.
Identification of Imperfections

Much confusion has existed in the industry regarding the identification of defects that exist in laminates. To help identify those conditions, refer to the following sections where definitions, illustrations and photographs have been provided which precisely define and identify the following conditions:

Surface 2.2
• weave exposure 2.2.1
• weave texture 2.2.2
• exposed/disrupted fibers 2.2.3
• pits and voids 2.2.4

Subsurface 2.3
• measing 2.3.1
• crazing 2.3.2
• delamination/blistering 2.3.3
• foreign inclusions 2.3.4

It is important to note that laminate defect conditions may exist when the fabricator receives the material from the laminator, or may become apparent during the fabrication of the printed board. Some defects may be induced during processing.

The Use of Acceptability Criteria

Everyone cannot be an expert on laminate defects. Some nondestructive visual criteria must be established to aid in making a decision regarding acceptability levels.
2.2 BASE MATERIAL SURFACE

2.2.1 Weave Exposure

Weave Exposure: A surface condition of base material in which the unbroken fibers of woven cloth are not completely covered by resin.

Acceptable - Class 1, 2, 3
• Excluding the area(s) with weave exposure, the remaining space between conductors meets the minimum conductor spacing requirement.

Nonconforming - Class 1, 2, 3
• Excluding the area(s) with weave exposure, the remaining space between conductors is less than the minimum conductor spacing requirements.
Weave Texture: A surface condition of base material in which a weave pattern of cloth is apparent although the unbroken fibers of woven cloth are completely covered with resin.

Acceptable – Class 1, 2, 3
• Weave texture is an acceptable condition in all classes but is sometimes confused with weave exposure because of similar appearances.

This example could be either weave exposure or weave texture. The difference cannot be determined from this view. The difference can be discerned using nondestructive tests (oblique illumination with microscope) or microsection.
2.2 BASE MATERIAL SURFACE

2.2.3 Exposed/Disrupted Fibers

Acceptable - Class 1, 2, 3
- Exposed or disrupted fibers do not bridge conductors and do not reduce the conductor spacing below the minimum requirements.

Nonconforming
- Exposed or disrupted fibers bridge conductors and/or reduce the conductor spacing below the minimum requirements.
2.2 BASE MATERIAL SURFACE

2.2.4 Pits and Voids

Target Condition - Class 1, 2, 3
• No pits or voids.

Acceptable – Class 1, 2, 3
• Pits or voids do not exceed 0.8 mm [0.031 in].
• Total board area affected is less than 5% on either side.
• Pits or voids do not bridge conductors.

Nonconforming – Class 1, 2, 3
• Pits or voids larger than 0.8 mm [0.031 in].
• Total board area affected exceeds 5% on either side.
• Pits or voids bridge conductors.
2.3 BASE MATERIAL SUBSURFACE

Introduction

This section is focused on those subsurface conditions of laminated base materials that are externally observable through the base material itself and some solder resist coatings. The most frequent subsurface base materials conditions are termed measling, crazing, delamination, blistering and foreign materials. These conditions may be observed throughout the printed board manufacturing and inspection process; such as:

- During incoming metal-clad base material evaluations after being manufactured by the laminator,
- By the printed board manufacturer after having removed (etched) the metal-cladding in the preparation of “inner-layer” details for multilayer printed boards,
- After etching the “outer” layers of printed boards to form the required arrangement of conductive patterns and markings,
- After baking operations (such as solder resist or component legends),
- After thermal shock, as in solder fusing/coating or solderability testing processes.

Base material subsurface conditions have been the subject of considerable discussion within the printed board industry for several decades. Of the several subsurface conditions, measling and crazing continue to cause the most concerns. Measles and crazing have been the primary focus of two IPC “Blue Ribbon Committees” of experts. The following are brief summaries and additional comments from the IPC’s Blue Ribbon Committee:

Brief summary of the First IPC Blue Ribbon Committee on Measles

The committee conducted a wide overview of printed board base material surface and subsurface conditions with a major focus on measles. IPC’s “Measles in Printed Wiring Boards, Information Document” was published in 1973 as a result of this effort. The committee was to collect as much data as was available on measles and other surface/subsurface conditions; and to standardize the terms, definitions (descriptions), photographs, and illustrations of surface and subsurface conditions. It was felt that sufficient research had been done by industry and that a position on “measles” could be prepared by the committee. The committee’s recommendation was as follows, “comprehensive review of available literature and available research and test data, that while measles may be objectionable cosmetically, their effect on functional characteristics of finished products, are at worst minimal, and in most cases insignificant.”

Comments: Despite the committee’s recommendation and industry data, there was still a strong reluctance by most government and industry personnel to accept that measles are a cosmetic condition with no functional effect in most applications. Most companies continued to retain “no measling” requirements in their specifications. But when measles or other nonconforming surface/subsurface conditions had severe impact on their production schedules, the customer (or acceptance agency) would produce a document that established acceptance guidelines for measles (and frequently other surface and subsurface conditions). The new guidelines were based on size, percent reduction in conductor spacing, and amount of affected area. They also varied from customer-to-customer. As technology evolved, in particular reductions in conductor spacing, the effect of measling and other surface/subsurface conditions once again became a serious industry wide concern. As a result, a second IPC Blue Ribbon Committee on Measles was formed.

Brief summary of the Second IPC Blue Ribbon Committee on Measles

The committee was formed in late 1978. This committee reviewed the findings of the first committee, solicited the industry for additional data, and reviewed the proprietary acceptance criteria provided by IPC members. The Second Blue Ribbon Committee came to the same conclusion. Measles are a cosmetic process indicator and had almost no reported effects on a product’s functional performance in most applications. The major exception was high voltage applications. There was still reluctance by some government organizations and a few industrial companies to categorically accept measles. As such, this committee established a set of measling/crazing requirements that obtained consensus from all IPC members. The result was a matrix of acceptance limitations for the three major phases of the printed board electronic assembly process: laminated material, printed board final inspection, and after printed board assembly. These requirements included percent reductions in conductor spacing (not exceeding minimum conductor spacing), and various amounts of measled area for each side of the printed board (or assembly) based on the Class of product. These requirements were added as an amendment to the first printing of the IPC-A-600, Revision C, and were included in later printings of the C revision and, in a different format, the IPC-A-600, Revision D.

Comments: The primary concerns expressed by the reluctant individuals are summarized in the following list (with comments):

- Electrical Insulation Resistance, both volume and surface - several reports and available test data indicates that insulation resistance is not significantly affected by measling or crazing.
• Contamination - the concern was that ionic materials could diffuse or be “pumped” (by alternating atmospheric pressure) into measles or crazing and would result in lower insulation resistance or cathodic-anodic filament (CAF) growths, shorts. Salt spray tests indicated this was not a valid premise, and most ionic materials (such as salts) will not diffuse into the base material.

• Applied Voltages - high voltage applications are a concern (in particular where there is the possibility of “corona” in the measling or crazing) the dielectric strength is reduced by 20-50% in comparison to a similar nonmeasled/crazed area, in particular at altitudes greater than 20 km [12.43 miles].

• Environmental - most measling/crazing did not appear to increase in size or occurrence due to environmental testing.

IPC-A-600, Revision E, was the first revision to reflect the needs for surface mounted component technology. As such, the acceptance requirements for measling and crazing were separated. For measles, the acceptance requirements allowed bridging under surface conductor spacing. This was done based on the definition of measles, test data, and industry experience of measles having never been documented to cause a functional failure. Crazing is much less controlled separation in the base material forming “interconnections” between measles and possibly adjacent conductive patterns; therefore, the acceptance requirements for crazing were set the same as the similar conditions of delamination and blistering.

Over a period of time, governing specifications have become excessively heavy regarding the presence of measles. In addition, cosmetic appearance has become a major acceptance criterion. In actual fact, no failure has ever been attributed to measling, based on all military and industry testing to date. IPC, industry and various military agencies have conducted extensive testing in severely measled assemblies under extreme environmental conditions for long periods of time with no evidence of growth, spreading or any detriment to the function of the assembly. Measles should not be the cause for rejection.

Measling is an internal condition occurring in the woven fiber reinforced laminated base material in which the bundles are separated at the weave intersection. The term “crazing” is sometimes used to describe an array of measles which appear from the surface to be interconnected. When the measles look to be interconnected, this condition called “crazing” is a form of delamination in that there are separations along the length of the fiber/yarns and the resin.

In a case study done, the prime cause of the observed measles was a combination of moisture, which diffuses readily into epoxy-glass, and component soldering temperatures. The application of local high temperatures for component mounting caused entrapped moisture to vaporize and break the epoxy-glass bond at the “knuckle” (intersection of the warp and fill of the e-glass cloth). From previous experience, it is known that epoxy-glass absorbs atmospheric moisture, and when moisture content exceeds 0.3 wt%, it can give rise to measling during solder dip/level and/or assembly soldering operations.

There are other factors that can contribute to measles/crazing such as: resin composition, method of making laminates, coupling agents, Tg, etc. In the past, reports were compiled which revealed that measles and crazing with over 50% spacing violation were not adverse to the reliability of the hardware. Why, if all test reports showed no problems with measles and no reported field failures, are we so concerned about measles and crazing? Because it appears feasible, in theory, that if measles with 100% conductor spacing violation combines with moisture or some other contaminant, copper migration (IR failures) should be experienced between conductors.

Even when the potential failure mechanism mentioned above is analyzed, it is almost impossible to experience such (IR/migration) failure. First, a measle(s) gapping conductive patterns is needed. Secondly, moisture in the printed board/assembly, along with a conductive or ionic contaminant such as chlorides, is necessary.
In this instance, a typical industry example, the measle is at the center between two plated through holes (see Figure 1). The measle is 0.4 mm [0.0157 in] wide. In order to get possible copper migration, the measle had to gap the two plated through holes. This of course would be most unlikely. The second example (see Figure 2) illustrates what is required for a potential failure mechanism between two surface conductors. A (+) conductor directly over a knuckle is required and a (-) conductor is also required directly over a knuckle. For an electrical short to occur between these conductors through the base material, there would need to be a conductive path from one conductive pattern, through the remaining dielectric materials (resin and yarn) to the separation (measle), along the separation in the direction of the other conductive pattern, once again through the remaining dielectric materials (resin and yarn), and to the second conductive pattern. In order to induce a failure all of the above mentioned ingredients are required along with a voltage potential between two adjacent conductors. This occurrence is highly unlikely and is most likely why the industry has not experienced any adverse reliability problems due to measles.

When making acceptance calls on electronic hardware, consider all the possible concerns mentioned above. Measles should not be considered a nonconforming condition. It should instead be considered a process indicator, telling you that the process is on the verge of going out of control. Correct the problem, but do not scrap the product, taking into account all of the above mentioned variables.
2.3 BASE MATERIAL SUBSURFACE

2.3.1 Measling

**Measling**: Measling manifests itself in the form of discrete white squares or “crosses” below the surface of the base material, and is usually related to thermally induced stress. Measles are subsurface phenomena that have been found in new laminated materials and in every board type made from woven fiber reinforced laminates at one time or another. Since measles are strictly subsurface phenomena and occur as a separation of fiber bundles at fiber bundle intersections, their apparent positions relative to surface conductors have no significance.

![Measling Image](image)

**Note**: Measles are observed from the surface. Cross-sections are for illustration purposes only.

**Acceptable - Class 1, 2, 3**
- Measles are acceptable for all products, except for high-voltage applications.
2.3 BASE MATERIAL SUBSURFACE

2.3.2 Crazing

Crazing: An internal condition occurring in the laminated base material in which the fibers within the yarn are separated. This can occur at the weave intersections or along the length of the yarn. This condition manifests itself in the form of connected white spots or "crosses" below the surface of the base material, and is usually related to mechanically induced stress. When the crosses are connected the condition is evaluated as follows:

Target Condition - Class 1, 2, 3
• No evidence of crazing.

Acceptable - Class 2, 3
• The imperfection does not reduce the space between conductive patterns below the minimum conductor spacing.
• The area of crazing does not span more than 50% of the distance between adjacent conductive patterns.
• No propagation as a result of thermal testing that replicates the manufacturing process.
• Crazing at the edge of the board does not reduce the minimum distance between board edge and conductive pattern; or 2.5 mm [0.0984 in] if not specified.

Acceptable - Class 1
• The imperfection does not reduce the space between conductive patterns below the minimum conductor spacing.
• The area of crazing spans more than 50% of the distance between conductors, but does not bridge between conductive patterns.
• No propagation as a result of thermal testing that replicates the manufacturing process.
• Crazing at the edge of the board does not reduce the minimum distance between board edge and conductive pattern; or 2.5 mm [0.0984 in] if not specified.

Note: Crazing is observed from the surface. Cross-sections are for illustration purposes only.
### 2.3 BASE MATERIAL SUBSURFACE

#### 2.3.3 Delamination/Blister

**Delamination:** A separation between plies within a base material, between a material and conductive foil, or any other planar separations within a printed board.

**Blister:** Delamination in the form of a localized swelling and separation between any of the layers of a lamination base material, or between base material and conductive foil or protective coating.

**Target Condition − Class 1, 2, 3**
- No blistering or delamination.

**Acceptable − Class 2, 3**
- The area affected by imperfections does not exceed 1% of the board area on each side.
- The imperfection does not reduce the space between conductive patterns below the minimum conductor spacing.
- The area of the blister or delamination does not span more than 25% of the distance between adjacent conductive patterns.
- No propagation as a result of thermal testing that replicates the manufacturing process.
- Are no closer to the edge of the board than the specified minimum distance between board edge and conductive pattern; or 2.5 mm [0.0984 in] if not specified.

**Acceptable − Class 1**
- The area affected by imperfections does not exceed 1% of the board area on each side.
- The area of the blister or delamination spans more than 25% of the distance between conductors, and does not reduce the space between conductor patterns below the minimum conductor spacing.
- No propagation as a result of thermal testing that replicates the manufacturing process.
- Are no closer to the edge of the board than the specified minimum distance between board edge and conductive pattern; or 2.5 mm [0.0984 in] if not specified.

**Note:** The area affected is determined by combining the area of each imperfection and dividing by the total area of the printed board. A separate determination is made for each side.
2.3 BASE MATERIAL SUBSURFACE

2.3.4 Foreign Inclusions

*Foreign Particles:* Metallic or nonmetallic, which may be entrapped or embedded in an insulating material.

Foreign material may be detected in raw laminate, B stage, or processed multilayer printed boards. The foreign objects may be conductive or nonconductive, both types may be nonconforming depending on size and location.

**Target Condition – Class 1, 2, 3**
- No foreign inclusions.

**Acceptable – Class 1, 2, 3**
- Translucent particles trapped within the board shall be acceptable.
- Opaque particles trapped within the board shall be acceptable provided:
  a) the particle is 0.125 mm [0.004921 in] or more from the nearest conductive pattern.
  b) the particle does not reduce the spacing between adjacent conductors to below the minimum spacing specified on the procurement documentation, or 0.125 mm [0.004921 in] if not specified.
- Electrical parameters of the board are unaffected.

**Nonconforming – Class 1, 2, 3**
- Electrical parameters of the board are affected.
- Opaque particles trapped within the board shall be nonconforming if:
  a) the particle is closer than 0.125 mm [0.004921 in] to the nearest conductive pattern.
  b) the particle reduces the conductor spacing below the minimum specified.
2.4 SOLDER COATINGS AND FUSED TIN LEAD

2.4.1 – Nonwetting

Target Condition – Class 1, 2, 3
• No nonwetting.

Nonconforming – Class 1, 2, 3
• Nonwetting on any conductive surface where solder is not excluded by resist or other plating finish.
2.4 SOLDER COATINGS AND FUSED TIN LEAD

2.4.2 – Dewetting

Target Condition – Class 1, 2, 3
• No dewetting.

Acceptable – Class 2, 3 (A)
• On conductors and ground or voltage planes.
• On 5% or less of each land area for solder connection.

Acceptable – Class 1 (B)
• On conductors and ground or voltage planes.
• On 15% or less of each land area for solder connection.

Nonconforming – Class 1, 2, 3
• Defects exceed above criteria.
2.5 HOLES – PLATED-THROUGH – GENERAL

2.5.1 Nodules/ Burrs

Target Condition – Class 1, 2, 3
• No evidence of nodules or burrs.

Acceptable – Class 1, 2, 3
• Allowed if minimum finished hole diameter is met.

Nonconforming – Class 1, 2, 3
• Minimum finished hole diameter is not met.
2.5 Holes – Plated-Through – General

2.5.2 Pink Ring

Acceptable – Class 1, 2, 3

- No evidence exists that pink ring affects functionality. The presence of excessive pink ring may be considered a process indicator but is not nonconforming. The focus of concern should be the quality of the lamination bond and hole cleaning and conditioning processes.
2.5.3 Voids – Copper Plating

Target Condition – Class 1, 2, 3
• No voids

Acceptable – Class 3
• No evidence of voids in the hole.

Acceptable – Class 2
• No more than one void in any hole.
• Not more than 5% of the holes have voids.
• Any void is not more than 5% of the hole length.
• The void is less than 90° of the circumference.

Acceptable – Class 1
• No more than three voids in any hole.
• Not more than 10% of the holes have voids.
• Any void is not more than 10% of the hole length.
• All voids are less than 90° of the circumference.

Nonconforming – Class 1, 2, 3
• Defects exceed the above criteria.
2.5 HOLES – PLATED-THROUGH – GENERAL

2.5.4 Plating Voids – Finished Coating

Target Condition – Class 1, 2, 3
• No voids

Acceptable – Class 3
• No more than one void in the hole in no more than 5% of holes.
• The void is not more than 5% of the hole length.
• The void is less than 90° of the circumference.

Acceptable – Class 2
• No more than three voids in any hole.
• Not more than 5% of the holes have voids.
• Any void is not more than 5% of the hole length.
• All voids are less than 90° of the circumference.

Acceptable – Class 1
• No more than five voids in any hole.
• Not more than 15% of the holes have voids.
• Any void is not more than 10% of the hole length.
• All voids are less than 90° of the circumference.
2.6 HOLES UNSUPPORTED

2.6.1 Haloing

**Haloing:** Mechanically induced fracturing or delamination on or below the surface of the base material; a light area around the holes, other machined areas or both are usually indications of haloing. See also 2.1.3.

**Target Condition – Class 1, 2, 3**
- No haloing or edge delamination.

**Acceptable – Class 1, 2, 3**
- Penetration of haloing or edge delamination does not reduce the distance from the edge of hole to the closest conductive pattern by more than 50% of that specified, or more than 2.5 mm [0.0984 in] if not specified.

**Nonconforming – Class 1, 2, 3**
- Penetration of haloing or edge delamination at holes or cutouts reduces the unaffected distance from the edge of the hole or cutout to the closest conductive pattern by more than 50% of that specified, or more than 2.5 mm [0.0984 in] if not specified, whichever is less.
2.7 PRINTED CONTACTS

2.7.1 Surface Plating – General

**Target Condition – Class 1, 2, 3**
- Contacts are free of pits, pinholes and surface nodules.
- No exposed copper/plating overlap between solder finish or solder mask and tip finish.

**Acceptable – Class 1, 2, 3**
- Surface defects do not expose bare metal in specified contact area.
- Solder splashes or tin-lead plating does not occur in specified contact area.
- Nodules and metal bumps in specified contact area do not protrude above the surface.
- Pits, dents or depressions do not exceed 0.15 mm [0.00591 in] in their longest dimension. There are not more than three per contact, and they do not appear on more than 30% of the contacts.

**Acceptable – Class 3**
- Exposed copper/plating overlap is 0.8 mm [0.031 in] or less.

**Acceptable – Class 2**
- Exposed copper/plating overlap does not exceed 1.25 mm [0.04921 in].

**Acceptable – Class 1**
- Exposed copper/plating overlap does not exceed 2.5 mm [0.0984 in].

**Nonconforming – Class 1, 2, 3**
- Defects exceed above criteria.

**Target Condition – Class 1, 2, 3**
- Edge condition - smooth, no burrs, no rough edges, no lifted plating on printed contacts, no separation (delamination) of printed contacts from the base material, and no loose fibers on the beveled edge. Exposed copper at end of printed contact is permissible.

*Note 1:* These conditions do not apply to a band 0.15 mm [0.00591 in] wide around the periphery of the printed contact land including the insertion area.

*Note 2:* Discoloration is permitted in the plating overlap zone.
2.7 PRINTED CONTACTS

2.7.2 Burrs on Edge-Board Contacts

Acceptable – Class 1, 2, 3
• Edge condition - slight uneven dielectric surface. No separation of plating or printed contacts from the base material.

Nonconforming – Class 1, 2, 3
• Edge condition - ragged, rough dielectric, metallic burrs, lifted printed contacts.
2.7 PRINTED CONTACTS

2.7.3 Adhesion of Overplate

Acceptable – Class 1, 2, 3
• Good plating adhesion as evidenced by tape test. No plating removed.

Nonconforming – Class 1, 2, 3
• Poor plating adhesion as evidenced by tape test.

*Note:* The adhesion of the plating shall be tested in accordance with IPC-TM-650, Method 2.4.1, using a strip of pressure sensitive tape applied to the surface and removed by manual force applied perpendicular to the circuit pattern. If overhanging metal breaks off and adheres to the tape, it is evident of overhang or slivers, but not of plating adhesion failure.
This section covers acceptability criteria for marking of printed boards. Marking of printed boards provides a means of identification and aids in assembly. Legends screened over metal will generally degrade in a solder process or stringent cleaning environments. Legends over metal are not recommended. When use of legends over solder is required, an etched legend is target condition. Minimum requirements should be specified on the procurement documentation. Examples of the marking addressed by this section are:

- Assembly or fabrication part numbers when a requirement of the procurement documentation. Each individual board, each qualification board, and each set of quality conformance test circuitry (as opposed to each individual coupon) shall be marked in order to ensure traceability between the boards/test circuitry and the manufacturing history and to identify the supplier (logo, etc.).

- Component insertion locators, when a requirement of the procurement documentation.

- Manufacturing sequence number when required by the work order.

- Revision letter when the part number is a requirement of the procurement documentation.

- Designator for test points or adjustment points.

- Polarity or clocking indicators.

- U.L. designator.

The procurement documentation (artwork) is the controlling document for location and type of marking. The procurement documentation revision letter to which the board is fabricated shall be marked on the board if part number marking is a requirement of the procurement documentation. Marking on printed boards shall withstand all tests, cleaning and compatible processes to which the boards are subjected and shall be legible (capable of being read and understood) as defined by the requirements of this document.

The marking information on printed boards (part reference designations), shall be permanent and be capable of withstanding the environmental tests and cleaning procedures specified for the printed board. Marking shall be legible within the requirement of this document. The board shall be inspected at no greater magnification than 2X. When conductive inks are used they should meet the specifications of the IPC-6010 series.

This section has general requirements for all marking (including laser, labels, bar coding, etc.) and specific criteria for the following types of marking:

- Etched Markings.

- Screened or Stamped Markings.

Unless otherwise specified, each individual board, each qualification board, each set of quality conformance test circuitry (as opposed to each individual coupon) is marked in accordance with the procurement documentation, with the date code and manufacturer's identification (e.g., cage code for military, logo, etc.). The marking is produced by the same process as used in producing the conductive pattern, or by use of permanent fungistatic ink or paint, or by vibrating pencil marking on a metallic area provided for marking purposes or a permanently attached label. Conductive markings, either etched copper or conductive black ink are considered as electrical elements of the board and should not reduce the electrical spacing requirements. All markings are to be compatible with materials and parts, legible for all tests, and in no case affect board performance.
### 2.8 MARKING

#### 2.8.1 General

The basic criteria for all markings is the same. The following are general acceptance criteria for all marking. Criteria for specific markings are on the following pages.

**Target Condition — Class 1, 2, 3**

- Each character is complete.
- Polarity and clocking symbols are present and legible.
- Character lines are sharply defined and uniform in width.
- Open areas in characters are not filled, (0, 6, 8, 9, A, B, D, O, P, Q, R).

**Acceptable — Class 1, 2, 3**

- Lines of a number or letter are broken providing the character is legible.
- The open areas in characters may be filled providing the characters are legible and cannot be confused with another letter or number.

**Nonconforming — Class 1, 2, 3**

- Missing or illegible characters in the markings.
- Open areas of characters are filled and are not legible, or liable to be misread.
- Lines of character smeared, broken or missing to the extent that the character is illegible or liable to be misread.

**Nonconforming — Class 1, 2, 3**

- Although it is acceptable to use impression stamp markings on unused portions of panels, they are not allowed on finished boards. Engraved marking, impression stamp - any mark that cuts into the laminate is handled in the same manner as a scratch.
An etched marking is produced the same as the conductors on the printed board. As a result, the following criteria must be met for etched marking:

**Target Condition – Class 1, 2, 3**
- Meets general criteria, (section 2.8.1).
- Minimum conductor spacing requirements have also been maintained between etched symbolization and active conductors.

**Acceptable – Class 3**
- Marking defects are acceptable regardless of cause, (i.e., solder bridging, overetching, etc.) as long as marking meets general criteria (section 2.8.1).
- Marking does not violate the minimum electrical clearance limits.
- Edges of the lines forming a character may be slightly irregular.

**Acceptable – Class 2**
- Marking defects are acceptable regardless of cause, (i.e., solder bridging, overetching, etc.) as long as marking meets general criteria (section 2.8.1).
- Marking does not violate the minimum electrical clearance limits.
- Width of the lines forming a character may be reduced by up to 50%, providing they remain legible.

**Acceptable – Class 1**
- Marking defects are acceptable regardless of cause, (i.e., solder bridging, overetching, etc.) as long as marking meets general criteria (section 2.8.1).
- Marking does not violate the minimum electrical clearance limits.
- Legends are irregularly formed but the general intent of the legend or marking is discernible.

**Nonconforming – Class 1, 2, 3**
- Etched markings not meeting the requirements noted above.
Screened or ink stamped marking refers to any type of marking that is printed on top of the board. No cutting or etching is involved in producing this type of marking.

**Target Condition – Class 1, 2, 3**
- Meets general criteria, (section 2.8.1).
- Ink distribution is uniform, with no smearing or double images.
- Ink markings no closer than tangent to a land.

**Acceptable – Class 3**
- Meets general criteria.
- Ink may be built up outside the character line providing the character is legible.

**Acceptable – Class 2**
- Meets general criteria.
- Ink may be built up outside the character line providing the character is legible.
- Portion of component clocking symbol outline may be missing, providing the required clocking is clearly defined.
- Marking ink on component hole land does not extend into the part mounting hole, or reduce minimum annular ring.

**Acceptable – Class 1**
- Meets general criteria.
- Ink may be built up outside the character line providing the character is legible.
- Portion of component clocking symbol outline may be missing, providing the required clocking is clearly defined.
- Marking ink on component hole land does not extend into the part mounting hole, or reduce minimum annular ring.
- Marking may be smeared or blurred, provided it is still legible.
- Double images that are legible.
2.9 SOLDER RESIST (Solder Mask)

Introduction

The term “Solder Resist” and “Solder Mask” are frequently used when referring to any type of permanent or temporary polymeric resist coating material. The term “solder resist” is used in this document as a general term when referring to any type of permanent polymer coating materials used on printed boards. Solder resists are used to limit and control the application of solder to selected areas of the printed board during assembly soldering operations. Solder resist coatings are used to control and limit surface contamination of printed board surfaces during soldering and subsequent processing operations, and are sometimes used to reduce dendritic filament growth(s) between conductive patterns over the printed board’s base material surface. Detailed specifications and information regarding solder resist requirements are contained in IPC-6012 and IPC-SM-840.

Solder resist materials are not intended for use as a substitute for conformal coatings that are applied after assembly to cover components, component lead/terminations and solder connections. Determination of compatibility of solder resist materials with conformal coating materials, or other substances, is dependent upon the end item assembly environments.

The types of solder resist include:

• Deposited image, (liquid) screen printed form.
• Deposited image, electrostatic.
• Photo defined image, (liquid) resist form.
• Photo defined image, (dry film) resist form.
• Photo defined image, temporary resist.
• Photo defined, dry film over liquid.

*Note:* Touch up, if required to cover these areas with solder resist, shall be of a material that is compatible to and of equal resistance to soldering and cleaning as the originally applied resist.
2.9 SOLDER RESIST (Solder Mask)

2.9.1 Coverage Over Conductors

Target Condition – Class 1, 2, 3
- No skips, voids, blisters, misregistration or exposed conductors.

Acceptable – Class 1, 2, 3
- Metal conductors not exposed or bridged by blisters in areas where solder resist is required.
- In areas containing parallel conductors, adjacent conductors are not exposed by the absence of solder resist except where space between conductors is intended to be uncovered.
- Touch up, if required to cover these areas with solder resist, is of a material that is compatible to and of equal resistance to soldering and cleaning as the originally applied solder resist.

Nonconforming – Class 1, 2, 3
- Metal conductors exposed in areas where solder resist is required.
- Metal conductors bridged by blisters in areas where solder resist is required.
- In areas containing parallel conductors, adjacent conductors are exposed by the absence of solder resist except where space between conductors is intended to be uncovered.
2.9 SOLDER RESIST (Solder Mask)

2.9.2 Registration to Holes (All Finishes)

Target Condition – Class 1, 2, 3
- No solder resist misregistration. The solder resist is centered around the lands within the nominal registration spacings.

Acceptable – Class 1, 2, 3
- Misregistration of the resist to the land patterns but the resist does not violate minimum annular ring requirements.
- No solder resist in plated-through holes, except those not intended for soldering.
- Adjacent isolated lands or conductors are not exposed.

Nonconforming – Class 1, 2, 3
- Misregistration which violates minimum annular ring requirements.
- Presence of solder resist in component mounting holes.
- Adjacent land or conductor is exposed.
2.9 SOLDER RESIST (Solder Mask)

2.9.3 Registration to Other Conductive Patterns

Target Condition – Class 1, 2, 3
• No solder resist misregistration.

Acceptable – Class 1, 2, 3
• Misregistration of solder resist defined lands does not expose adjacent isolated lands or conductors.
• No solder resist encroachment on edge board printed contacts or test points.
• On surface mount lands with a pitch of 1.25 mm [0.04921 in] or greater, encroachment is on one side of land only and does not exceed 0.05 mm [0.0020 in].
• On surface mount lands with a pitch less than 1.25 mm [0.04921 in], encroachment is on one side of land only and does not exceed 0.025 mm [0.000984 in].

Nonconforming – Class 1, 2, 3
• Solder resist encroachment on edge board printed contacts or test points when not specified.
• On surface mount lands with a pitch of 1.25 mm [0.04921 in] or greater, encroachment is on both sides of land or exceeds 0.05 mm [0.0020 in].
• On surface mount lands with a pitch less than 1.25 mm [0.04921 in], encroachment is on both sides of land or exceeds 0.025 mm [0.000984 in].
2.9 SOLDER RESIST (Solder Mask)

2.9.3.1 Ball Grid Array (Solder Resist-Defined Lands)

Solder Resist-Defined Lands: A portion of the conductive pattern, used to connect electronic component ball terminations, (BGAs, Fine-Pitch BGAs, etc.), where the solder resist encroaches on the edges of the land to restrict the ball attachment within the solder resist profile.

Target Condition - Class 1, 2, 3
• The solder resist overlap is centered around the lands.

Acceptable - Class 1, 2, 3
• Misregistration creates breakout of the solder resist on the land of not more than 90°.
**Copper-Defined Lands:** A portion of the conductive pattern usually, but not exclusively, used for the connection and/or attachment of components where the land metal is involved in the attachment process, and if solder resist is applied to the product a clearance is provided for the land area.

**Target Condition**
- The solder resist is centered around the copper land with clearance.

**Acceptable – Class 1, 2, 3**
- Solder resist does not encroach on the land, except at the conductor attachment.
**Solder Dam:** A portion of the solder resist pattern, used in conjunction with BGA or Fine Pitch BGA mounting, that provides a segment of solder resist material to separate the mounting portion of the pattern and the interconnection via in order to avoid solder being skived from the attachment joint into the via.

**Target Condition**
- The solder resist is centered around the copper land and escape via with clearance. Resist only covers the conductor between copper land and escape via.

**Acceptable – Class 1, 2, 3**
- If solder resist dam is specified (to prevent bridging of solder to the via), it remains in place with the copper covered.
2.9 SOLDER RESIST (Solder Mask)

2.9.4 Blisters/Delamination

Target Condition – Class 1, 2, 3
• No evidence of blisters, bubbles or delamination between the solder resist and the printed board base material and conductive patterns.

Acceptable – Class 2, 3
• Two per side not exceeding 0.25 mm [0.00984 in] in the greatest dimension.
• Reduction of electrical spacing does not exceed 25%.

Acceptable – Class 1
• Blisters, bubbles or delamination do not bridge between conductors.

Nonconforming – Class 2, 3
• More than two per side, greater than 0.25 mm [0.0984 in] in the greatest dimension.
• Electrical spacing is reduced more than 25%.

Nonconforming – Class 1, 2, 3
• Conductors are bridged.
2.9 SOLDER RESIST (Solder Mask)

2.9.5 Adhesion (Flaking or Peeling)

Target Condition – Class 1, 2, 3
• The surface of the solder resist is uniform in appearance and is firmly bonded to the printed board surfaces.

Acceptable – Class 2, 3
• No evidence of solder resist lifting from the board prior to testing.
• After testing in accordance with IPC-TM-650, Method 2.4.28.1, the amount of solder resist lifting does not exceed the allowable limits of the 6010 Series.

Acceptable – Class 1
• Prior to testing, the solder resist is flaking from the printed board base material or conductive pattern surfaces and the remaining solder resist is firmly bonded. The missing solder resist does not expose adjacent conductive patterns or exceed allowable lifting.
• After testing in accordance with IPC-TM-650, Method 2.4.28.1, the amount of solder resist lifting does not exceed the allowable limits.

Nonconforming – Class 1, 2, 3
• Solder mask peeling exceeds above limits.
2.9 SOLDER RESIST (Solder Mask)

2.9.6 Skip Coverage

Target Condition – Class 1, 2, 3
• The solder resist exhibits uniform appearance over the base material surface, conductor sides and edges. It is firmly bonded to the printed board surface with no visible skipping, voids or other defects.

Acceptable – Class 2, 3
• No evidence of solder resist skipping.

Acceptable – Class 1
• The missing solder resist does not reduce the conductor spacing between conductive patterns below the minimum acceptability requirements.
• There is skipping of the solder resist along the sides of the conductive patterns.

Nonconforming – Class 1, 2, 3
• There is skipping of the solder resist between conductive pattern edges.
2.9 SOLDER RESIST (Solder Mask)

2.9.7 Waves/Wrinkles/Ripples

Target Condition – Class 1, 2, 3
• There are no wrinkles, waves, ripples or other defects in the solder resist coating over the printed board base material surfaces or conductive patterns.

Acceptable – Class 1, 2, 3
• Waves or ripples in the solder resist do not reduce the solder resist coating thickness below the minimum thickness requirements (when specified).
• Minor wrinkling is located in an area that does not bridge conductive patterns and passes IPC-TM-640, Method 2.4.28.1 (adhesion tape pull test).

Nonconforming – Class 1, 2, 3
• Wrinkles are located in an area that bridges conductive patterns or that reduces conductor spacing below the minimum.
• If a solder resist thickness is required, waves or ripples reduce the solder resist thickness below the minimum.
2.9 SOLDER RESIST (Solder Mask)

2.9.8 Tenting (Via Holes)

**Target Condition – Class 1, 2, 3**
- All holes required to be tented are completely covered with resist.

**Acceptable – Class 1, 2, 3**
- All holes required to be tented are covered by resist.

**Nonconforming – Class 1, 2, 3**
- Holes required to be tented are not covered.
2.9 SOLDER RESIST (Solder Mask)

2.9.9 Soda Strawing

**Soda Strawing:** A long tubular-like void along the edges of conductive patterns where the dry film solder resist is not bonded to the base material surface or the edge of the conductor. Tin/lead fusing fluxes, fusing oils, solder fluxes, cleaning agents or volatile materials may be trapped in the soda straw void.

**Target Condition – Class 1, 2, 3**
- There are no visible soda straw voids between the solder resist and the printed board base material surface and the edges of the conductive patterns.

**Acceptable – Class 3**
- No evidence of soda strawing.

**Acceptable – Class 1, 2**
- The soda strawing along side conductive pattern edges does not reduce the conductor spacing below the minimum requirements, nor do the soda straw voids extend completely along the edge of the conductive pattern.

**Nonconforming – Class 1, 2, 3**
- Defects exceed above criteria.
2.9 SOLDER RESIST (Solder Mask)

2.9.10 Thickness

**Target Condition – Class 1, 2, 3**
- Thickness not specified: Visual coverage required.
- Thickness specified on procurement documentation: The solder resist coating thickness meets or exceeds the requirements specified on the procurement documentation.

**Acceptable – Class 1, 2, 3**
- Not specified: Visual coverage.
- Specified: The solder resist thickness meets the thickness requirements on the procurement documentation (cannot be visually assessed).

**Nonconforming – Class 1, 2, 3**
- Not specified: The solder resist coverage is not complete.
- Specified: The solder resist coating thickness is less than the thickness requirements specified on the procurement documentation (cannot be visually assessed).
2.10 PATTERN DEFINITION - DIMENSIONAL

Introduction

Printed boards shall meet the dimensional requirements specified on the procurement documentation such as board periphery, thickness, cutouts, slots, notches and edge board contacts. The accuracy, repeatability and reproducibility of the equipment used to verify the characteristics of printed boards should be 10% or less of the tolerance range of the dimensions being verified.

2.10.1 Conductor Width and Spacing

This section covers acceptability requirements and criteria for conductor width and spacing.

Acceptable conductor width and spacing is a measure of how well the printed board fabrication process is reproducing the master image, which basically determines the width and spacing requirements for the conductive patterns. Unless these characteristics are violated, edge definition itself is not necessarily a characteristic for acceptance or nonconformance, however, it can be considered a process indicator, requiring review of manufacturing procedures. In addition it may be an important consideration for controlled impedance circuits. Procurement documentation should establish edge definition requirements for applications of these types. When required, measurements of conductor edge definition are made in accordance with IPC-TM-650, Method 2.2.2.
2.10 PATTERN DEFINITION - DIMENSIONAL

2.10.1.1 Conductor Width

**Target Condition – Class 1, 2, 3**
- Conductor widths and spacing meet dimensional requirements of artwork or procurement documentation.

**Acceptable – Class 2, 3**
- Any combination of isolated edge roughness, nicks, pinholes, and scratches exposing base material that reduces the conductor width by 20% of the minimum value or less.
- There is no occurrence (edge roughness, nicks, etc.) greater than 10% of the conductor length or 13 mm, whichever is less.

**Acceptable – Class 1**
- Any combination of isolated edge roughness, nicks, pinholes, and scratches exposing base material that reduces the conductor width 30% of the minimum value or less.
- There is no occurrence (edge roughness, nicks, etc.) greater than 10% of the conductor length or 25 mm, whichever is less.
2.10.1.2 Conductor Spacing

Target Condition – Class 1, 2, 3
- Conductor spacing meets dimensional requirements of the procurement documentation.

Acceptable – Class 3
- Any combination of edge roughness, copper spikes, etc., that does not reduce the specified minimum conductor spacing by more than 20% in isolated areas.

Acceptable – Class 1, 2
- Any combination of edge roughness, copper spikes, etc., that does not reduce the specified minimum conductor spacing by more than 30% in isolated areas.
2.10 PATTERN DEFINITION - DIMENSIONAL

2.10.2 External Annular Ring – Measurement

**Annular Ring:** The portion of conductive material completely surrounding a hole. It is the area remaining between the edge of the drilled hole A and the edge of the land B.

**Conductor to Land Junction:** The point where conductor connects to the land.
2.10 PATTERN DEFINITION - DIMENSIONAL

2.10.3 External Annular Ring – Supported Holes

Target Condition – Class 1, 2, 3
- Holes are centered in the lands.

Acceptable – Class 3
- Holes are not centered in the lands, but the annular ring measures 0.050 mm [0.0020 in] or more.
- The minimum external annular ring may have 20% reduction of the minimum annular ring in isolated areas due to defects such as pits, dents, nicks, pinholes, or splay.

Acceptable – Class 2
- 90° breakout or less provided minimum lateral spacing is maintained. (A)
- 90° breakout at land to trace junction - conductor is not reduced by more than 20% of the minimum conductor width specified on the engineering drawing or the production master nominal. The conductor junction should never be less than 0.050 mm [0.0020 in] or the minimum line width, whichever is smaller. (C)

Acceptable – Class 1
- 180° breakout or less provided minimum lateral spacing is maintained. (B)
- 180° breakout at land to trace junction - trace not reduced by more than 30% of the minimum conductor width specified on the production master nominal. (D)
- Form, fit and function are not affected.
2.10 PATTERN DEFINITION - DIMENSIONAL

2.10.4 Annular Ring – Unsupported Holes

**Target Condition – Class 1, 2, 3**
- Holes are centered in the lands.

**Acceptable – Class 3**
- Annular ring measures 0.15 mm [0.00591 in] or more in any direction. (A) The minimum external annular ring may have a 20% reduction of the minimum annular ring in isolated areas due to defects such as pits, dents, nicks, pinholes or splay.

**Acceptable – Class 2**
- An annular ring remains; there is no breakout. (B)

**Acceptable – Class 1**
- Breakout allowed, except at conductor to land junction. (C)

**Nonconforming - Class 1, 2, 3**
- Defects exceed above criteria.
2.11 FLATNESS

Introduction

Flatness of printed boards is determined by two characteristics of the product; these are known as bow and twist. The bow condition is characterized by a roughly cylindrical or spherical curvature of the board while its four corners are in the same plane. Twist is the board deformation parallel to the diagonal of the board such that one corner is not in the same plane to the other three. Circular or elliptical boards must be evaluated at the highest point of vertical displacement. Bow and twist may be influenced by the board design as different circuit configurations or layer construction of multilayer printed boards can result in different stress or stress relief conditions. Board thickness and material properties are other factors that influence the resulting board flatness.

Bow and Twist

Bow and twist shall be determined using any of the procedures described in IPC-TM-650, Method 2.4.22. For printed boards using surface mount components, the bow and twist shall be 0.75% or less. For all other boards, bow and twist shall be 1.50% or less. Panels containing multiple boards that are assembled in panel form and later separated shall be assessed in panel form. Bow, twist, or any combination thereof, shall be determined by physical measurement and percentage calculation in accordance with IPC-TM-650, Method 2.4.22.
3.0 INTERNALLY OBSERVABLE CHARACTERISTICS

Introduction

The purpose of this section is to provide acceptability requirements for those characteristics which are internal to the printed board. These include the following characteristics in the base material, plated-through holes, internal conductive copper pattern, treatments to the internal copper, and internal ground/power/thermal planes, as described below:

• Subsurface imperfections in board material, such as delamination, blistering, and foreign inclusions.

• Subsurface imperfections to multilayer printed boards, such as voids, delamination, blistering, cracks, ground plane clearance and layer to layer spacing.

• Plated-through hole anomalies, including size, annular ring, nailheading, plating thickness, plating voids, nodules, cracks, resin smear, inadequate or excessive etchback, wicking, inner layer (post) separation, and solder thickness.

• Internal conductor anomalies, such as over or under etch, conductor cracks and voids, uneven or inadequate oxide treatment, and foil thickness.

• Visual observations made on cross-sections only.
3.1 DIELECTRIC MATERIALS

Introduction

This section covers the acceptability requirements of dielectric materials. Dielectric materials are evaluated after thermal stress. Requirements for evaluations made in the as received condition should be stated on the procurement documentation.

3.1.1 Laminate Voids (Outside Thermal Zone)

Notes:

1. The thermal zone extends 0.08 mm beyond the end of the land extending furthest into the laminate area.
2. Laminate defects in the Zone A areas are not evaluated on specimens which have been exposed to thermal stress or rework simulation.

Visual observations made on cross-sections only.
3.1 DIELECTRIC MATERIAL

3.1.1 Laminate Voids (Outside Thermal Zone) (cont.)

Target Condition
• Uniform and homogeneous laminate.

Acceptable – Class 2, 3
• Void less than or equal to 0.08 mm [0.0031 in] and does not violate minimum dielectric spacing.
• Imperfections, such as voids or resin recession, in Zone A areas that have been exposed to thermal stress and rework simulation.

Acceptable – Class 1
• Void less than or equal to 0.15 mm [0.00591 in] and does not violate minimum dielectric spacing. Laminate defects, such as voids or resin recession, in Zone A areas that have been exposed to thermal stress and rework simulation.

Nonconforming - Class 1, 2, 3
• Defects exceed above criteria.

Visual observations made on cross-sections only.
3.1 DIELECTRIC MATERIAL

3.1.2 Registration/Conductors to Holes

Registration of conductors is typically determined with respect to plated-through hole lands.
Requirements are established through minimum internal annular ring (see 3.3.1).

Visual observations made on cross-sections only.
3.1 DIELECTRIC MATERIAL

3.1.3 Clearance Hole, Unsupported, to Power/Ground Planes

Target Condition – Class 1, 2, 3
• Power/Ground plane setback meets the procurement documentation requirements.

Acceptable – Class 1, 2, 3
• A) Power/ground plane setback is greater than the minimum electrical conductor spacing specified on the procurement documentation.
• B) Ground plane may extend to the edge of an unsupported hole when specified in the procurement documentation.

Nonconforming – Class 1, 2, 3
• Power/ground plane setback is less than the minimum electrical conductor spacing specified on the procurement documentation.

Visual observations made on cross-sections only.
3.1 DIELECTRIC MATERIAL

3.1.4 Delamination/Blister

**Target Condition – Class 1, 2, 3**
- No delamination or blistering.

**Acceptable – Class 2, 3**
- No evidence of delamination or blistering.

**Acceptable – Class 1**
- If delamination or blistering is present, evaluate the entire board with the requirement of 2.3.3.

Visual observations made on cross-sections only.
Acceptable etchback or negative etchback, exhibits the evidence that resin smear has been removed from the innerlayer copper/ drilled hole interface. There is data, pro and against, that etchback is more reliable than negative etchback and vice versa. This all depends on what type of copper plating, copper foil, and weight of the foil being used. Excessive etchback as well as excessive negative etchback are not the target condition. Excessive etchback, in both instances, has an adverse effect on the reliability of the plated-through hole life.

**Etchback:** The etchback process, also known as positive etchback, is used to remove the dielectric material. The evidence of resin material being etched back theorizes that all resin smear has been removed and in addition, a three way interfacial bond occurs between the plated hole copper to the innerlayer copper foil. Theory is that three connections are more reliable than one. The drawbacks of etchback are that it creates rough holes which could create plated-through hole barrel cracks. Excessive etchback also contributes to stresses that might create foil cracks.

**Negative Etchback:** The theory here is that in order for the internal foil to be etched back/cleaned, you need to eliminate the smear. The benefits for utilizing negative etchback are that the process does not create a stress point at the internal plane, as does the etchback process, and it results in a very smooth/uniform copper barrel hole wall. The smooth hole wall and negative etchback are beneficial especially for the copper plating of high-reliability long term life applications. The drawback of negative etchback, if excessive, is that it may create innerlayer separation due to entrapped air pockets/contamination.

This section is not intended to prove or disprove which etchback process is preferred. There are many board manufacturers that are very successful in utilizing both the etchback and negative etchback processes. It is up to the individual designer/user, depending on the material, copper plating, copper foil and application, to specify what etchback process should be employed.

**Note:** Smear removal is removal of resins debris which results from the formation of the hole. Smear removal shall be sufficient to meet the acceptability criteria for plating separation (3.3.12 & 3.3.13). Smear removal should not be etched back greater than 0.025 mm. If it does, it is evaluated as etchback (3.1.5.1).

Visual observations made on cross-sections only.
3.1 DIELECTRIC MATERIAL

3.1.5.1 Etchback

**Target Condition – Class 1, 2, 3**
- Uniform etchback to a preferred depth of 0.013 mm [0.000512 in].

**Acceptable – Class 1, 2, 3**
- Etchback between 0.005 mm [0.00020 in] and 0.08 mm [0.0031 in].
- Shadowing is permitted on one side of each land.

**Nonconforming – Class 1, 2, 3**
- Etchback less than 0.005 mm [0.00020 in] or greater than 0.08 mm [0.0031 in].
- Shadowing on both sides of any land.

Visual observations made on cross-sections only.
3.1 DIELECTRIC MATERIAL

3.1.5.2 Negative Etchback

Target Condition – Class 1, 2, 3
• Uniform negative etchback of copper foil 0.0025 mm [0.000984 in].

Acceptable – Class 3
• Negative etchback less than 0.013 mm [0.000512 in].

Acceptable – Class 1, 2
• Negative etchback less than 0.025 mm [0.000984 in].

Nonconforming – Class 1, 2, 3
• Defect exceeds above criteria.

Visual observations made on cross-sections only.
Metal planes are used for mechanical reinforcement and/or electromagnetic shielding for printed boards. Many requirements are the same as for metal-core printed boards.

**Target Condition – Class 1, 2, 3**
- Metal plane setback exceeds the procurement documentation requirements.

**Acceptable – Class 1, 2, 3**
- Metal plane setback is equal to or greater than 0.1 mm [0.0040 in] (when a value is not specified by the procurement documentation).

**Nonconforming – Class 1, 2, 3**
- Metal plane setback is less than 0.1 mm [0.0040 in] (when a value is not specified by the procurement documentation).

Visual observations made on cross-sections only.
Minimum dielectric thickness is the maximum material condition used for the electrical voltage dielectric strength requirements.

**Target Condition – Class 1, 2, 3**
- The minimum dielectric thickness meets the requirements of the procurement documentation.

**Acceptable – Class 1, 2, 3**
- The minimum dielectric thickness meets the minimum requirements of the procurement documentation. If not specified, must be 0.09 mm [0.0035 in] or greater.

**Nonconforming – Class 1, 2, 3**
- The minimum dielectric thickness is less than the minimum requirements of the procurement documentation, or 0.09 mm [0.0035 in] if not specified.

*Note:* Products designed for transmission line impedance applications may have special requirements and measurement method specified on procurement documentation.

Visual observations made on cross-sections only.
3.1 DIELECTRIC MATERIAL

3.1.8 Resin Recession

Resin recession in a plated-through hole is generally defined as a separation between the plated barrel of the hole and the dielectric material on the hole wall. It is acceptable for all classes after thermal stress testing, unless otherwise specified on the procurement documentation.

Visual observations made on cross-sections only.
3.2 CONDUCTIVE PATTERNS – GENERAL

Introduction

This section covers acceptability requirements for printed board etching, innerlayers, and impedance controlled products. An acceptable etching process must result in all residual metal being removed with no evidence of contamination remaining on the product.

Over etching is cause for rejection when potential slivers result from excessive overhang of metal resist plating or when the finished conductor widths are less than specification requirements.

Under etching is cause for rejection when spurious metal remains on the product to the extent that spacing between conductors is less than specification requirements or if conductor width requirements are exceeded.

Conductor width is defined as the observable width of the copper conductor excluding organic or metallic resists unless otherwise specified. The “Minimum Conductor Width” often specified on the procurement documentation or performance document is usually measured at the base of the conductor and may not be the actual narrowest width of the conductor when observed in cross-section or often when viewed from the surface. An observation from the surface may not be adequate for acceptance of some products and etching processes. Where resistance per unit length is a requirement, a measurement of the average width of the cross-sectional area may be necessary. Where impedance control is required, a determination of the maximum conductor width may be important for the calculating impedance and a cross-section is often required.

Considerable variation in etch configurations is possible due to different etchants, resists and plated metal thicknesses. The conductor width may increase or decrease from the production artwork due to techniques used in processing during the imaging and developing operations. To achieve the “Design Width of Conductor,” the production master artwork often has conductor width adjustments made during plotting. The amount of adjustment of a conductor width on the “Production Master” may be 0.025 mm to 0.05 mm [0.000984 in to 0.0020 in]. Determination of adjustment is made by experimentation and compensation for an increase or decrease of the conductor width during plating or etching.

The illustrations in 3.2.1 are intended as a guideline to illustrate some of the edge geometry conditions which may result from different processing methods and illustrate the configurations of “Outgrowth,” “Undercut” and “Overhang.”

Definitions used in evaluating etched conditions (see IPC-T-50):

**Outgrowth:** The increase in conductor width at one side of the conductor, caused by plating buildup over that delineated by the production master.

**Undercut:** The distance on one edge of the conductor measured parallel to the board surface from the outer edge of the conductor, including etch resists, to the maximum point indentation to the copper conductor.

**Overhang:** The sum of the outgrowth and undercut.

**Design width of conductor:** The width of a conductor as delineated or noted on the procurement documentation.

Notes: 1. The “Production Master” may be adjusted for process methods and the artwork conductor width may differ from the design width.

2. Design width of conductor is most often stated as a minimum as measured at the base of the conductor. For impedance controlled circuits, a ± tolerance may be placed on conductor width.

**Production Master:** A 1 to 1 scale pattern which is used to produce one or more printed boards within the accuracy specified on the Procurement Documentation.

**Etch Factor:** The ratio of the depth of etch to the amount of lateral etch.

Visual observations made on cross-sections only.
3.2 CONDUCTIVE PATTERNS – GENERAL

3.2.1 Etching Characteristics

“A” Point of Narrowest Conductor Width: This is not “Minimum Conductor Width” noted on procurement documentation or performance specifications.

“B” Conductor Base Width: The width that is measured when “Minimum Conductor Width” is noted on the procurement documentation or performance specification.

“C” Production Master Width: This width usually determines the width of the metal or organic resist on the etched conductor.

Design width of the conductor is specified on the procurement documentation and is most often measured at the conductor base “B” for compliance to “Minimum Conductor Width” requirements.

The following two configurations show that conductor width may be greater at the surface than at the base.

Pattern plating (dry film resist) prior to reflow

Panel plating (dry film resist) prior to resist stripping

Internal layer after etch

Internal plated layer as used for buried vias

Visual observations made on cross-sections only.

70 IPC-A-600F November 1999 IPC-A-600F
Note: The extent of outgrowth, if present, is related to the dry film resist thickness. Outgrowth occurs when the plating thickness exceeds the resist thickness.

Note: The different etch configurations may not meet intended design requirements.

Visual observations made on cross-sections only.
The copper conductor may consist of combinations of copper foil, copper plating and electroless copper. Metal resist, solder coatings, and reflowed tin-lead plating that would normally be seen in a microsection are not shown in these illustrations.

**Target Condition – Class 1, 2, 3**
- Conductor width exceeds minimum requirement.

**Acceptable – Class 1, 2, 3**
- Conductor width meets minimum requirement.

**Nonconforming – Class 1, 2, 3**
- Conductor width is less than minimum requirement.

Visual observations made on cross-sections only.
Unless otherwise specified on the procurement documentation, the minimum total (copper foil plus copper plating) conductor thickness after processing shall be as follows:

<table>
<thead>
<tr>
<th>Designator</th>
<th>Weight</th>
<th>Starting Thickness</th>
<th>Finished Conductor Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>1/8 oz.</td>
<td>5 µm [0.00020 in]</td>
<td>20.0 µm [0.000787 in]</td>
</tr>
<tr>
<td>Q</td>
<td>1/4 oz.</td>
<td>9 µm [0.00035 in]</td>
<td>22.0 µm [0.000866 in]</td>
</tr>
<tr>
<td>T</td>
<td>3/8 oz.</td>
<td>12 µm [0.000472 in]</td>
<td>25.0 µm [0.000984 in]</td>
</tr>
<tr>
<td>H</td>
<td>1/2 oz.</td>
<td>17 µm [0.000670 in]</td>
<td>33.0 µm [0.00123 in]</td>
</tr>
<tr>
<td>1</td>
<td>1 oz.</td>
<td>35 µm [0.00138 in]</td>
<td>46.0 µm [0.00181 in]</td>
</tr>
<tr>
<td>2</td>
<td>2 oz.</td>
<td>70 µm [0.00276 in]</td>
<td>76.0 µm [0.00299 in]</td>
</tr>
<tr>
<td>3</td>
<td>3 oz.</td>
<td>105 µm [0.004134 in]</td>
<td>107.0 µm [0.004213 in]</td>
</tr>
<tr>
<td>4</td>
<td>4 oz.</td>
<td>140 µm [0.005512 in]</td>
<td>137.0 µm [0.005394 in]</td>
</tr>
<tr>
<td>Above 4 oz. copper</td>
<td>13 µm [0.000512 in] below minimum thickness</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For each succeeding ounce of copper foil above 4 oz, increase minimum conductor thickness by 30.0 µm.

3.2.4 Foil Thickness – Internal Layers

Minimum foil thickness (or conductor thickness) is the maximum continuous coplanar thickness that will conduct electrical current. Individual scratches are included, but the saw-toothed shaped “dendritic” surface for metal-clad adhesion promotion is excluded from the minimum foil thickness determination.

Target Condition - Class 1, 2, 3
- The foil thickness meets the foil thickness specified on the procurement documentation.

Acceptable - Class 1, 2, 3
- The foil thickness meets the minimum requirements.

Nonconforming - Class 1, 2, 3
- The foil thickness is less than the minimum specified on the procurement documentation or other referenced specification.
- The minimum internal layer foil thickness after processing shall be as follows for all classes:

<table>
<thead>
<tr>
<th>Designator</th>
<th>Weight</th>
<th>Starting Thickness</th>
<th>Minimum Conductor Thickness after Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>1/8 oz.</td>
<td>5 µm [0.00020 in]</td>
<td>3.5 µm [0.000138 in]</td>
</tr>
<tr>
<td>Q</td>
<td>1/4 oz.</td>
<td>9 µm [0.00035 in]</td>
<td>6.0 µm [0.00024 in]</td>
</tr>
<tr>
<td>T</td>
<td>3/8 oz.</td>
<td>12 µm [0.000472 in]</td>
<td>8.0 µm [0.00031 in]</td>
</tr>
<tr>
<td>H</td>
<td>1/2 oz.</td>
<td>17 µm [0.000670 in]</td>
<td>12.0 µm [0.000422 in]</td>
</tr>
<tr>
<td>1</td>
<td>1 oz.</td>
<td>35 µm [0.00138 in]</td>
<td>25.0 µm [0.000984 in]</td>
</tr>
<tr>
<td>2</td>
<td>2 oz.</td>
<td>70 µm [0.00276 in]</td>
<td>56.0 µm [0.002201 in]</td>
</tr>
<tr>
<td>3</td>
<td>3 oz.</td>
<td>105 µm [0.004134 in]</td>
<td>91.0 µm [0.00359 in]</td>
</tr>
<tr>
<td>4</td>
<td>4 oz.</td>
<td>140 µm [0.005512 in]</td>
<td>122.0 µm [0.004803 in]</td>
</tr>
<tr>
<td>Above 4 oz. copper</td>
<td>13 µm [0.000512 in] below minimum thickness</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Additional platings that may be required for internal layer conductors shall be separately designated as a plating thickness requirement. Visual observations made on cross-sections only.
This section identifies the acceptability characteristics in plated-through holes used in double-sided and multilayer rigid printed boards. Included in this section are photographic and illustrative depictions of plated-through hole characteristics for both drilled and punched holes, with separate examples where appropriate.

The test specimen shall be a representative coupon, a portion of the printed wiring board being tested, or a whole board if within size limits.

Sample holes should be selected at random. Vertical microsections, both parallel and perpendicular to a board edge are recommended. Horizontal microsectioning techniques may be used as the referee. Precise encapsulation and metallurgical techniques must be used to assure highly polished sections with correct part alignment and polishing to the mean of the hole diameter. The polished surface should be etched after initial smear evaluation and just prior to plating thickness measurements.

Methods of Inspection:

- **Hole Size (method optional - IPC-TM-650, Method 2.2.7)**
  - A. Optical
  - B. Document drill blank plug or plug gages
  - C. Tapered hole gage
  - Note: hole gages must be cleaned and storage oil must be removed prior to use.

- **Visual hole wall quality**
  - A. Voids, Nodules, etc., - locate with unaided eye, use up to 10X magnification for verification.
  - B. Discolorations, Stains, etc., - use unaided eye and/or solderability tests.

Microsection:

- **Plating thickness measurements**
  - A. Encapsulated Microsection Examination (IPC-TM-650, Method 2.1.1): The average copper thickness should be determined from three measurements, approximately equally spaced, on each side of the plated-through hole. Do not measure in areas having isolated imperfections such as voids, cracks or nodules. Variations in cracks can be defined per the illustration below. Small localized areas with plating thickness less than minimum requirement are evaluated as voids.
  - B. Nondestructive Method: Micro-ohm Measurements (IPC-TM-650, Method 2.2.13.1): This technique may be used to measure the average copper thickness in plated-through holes when properly standardized. The method has application to measurement of the minimum copper thickness. Due to the dependence on uniform hole geometry this method may not be appropriate for measurement of punched plated-through holes. The nondestructive feature and the speed and ease of measurement make this method useful in providing variable data for statistical process control.
  - C. Plating Thickness: Minimum requirements are established in IPC-6010 series.

- **Solderability**
  A lot sample or representative specimen should be subjected to a solderability test utilizing Methods B, C, or D of ANSI/ J-STD-003. The coating durability requirement should be pre-established. The plated-through holes should exhibit good wetting and capillary action.

Visual observations made on cross-sections only.
3.3 PLATED-THROUGH HOLES – GENERAL

3.3.1 Annular Ring – Internal Layers

The internal misregistration or annular ring is evaluated visually by examination of Coupon F (IPC-2221).

For multilayer boards, in addition to physical measurements of board surfaces and metallographic samples, annular ring can be established by either of two additional, nondestructive methods:

(a) X-ray examination of the board in accordance with IPC-TM-650, Method 2.6.10. Areas chosen for examination must be small enough to minimize parallax for the given test apparatus.

(b) Electrical testing of special coupon in accordance with IPC-TM-650, Method 2.5.16.

If internal annular ring breakout is detected in the vertical cross section but the degree of breakout cannot be determined, it shall be measured by horizontal microsection. The test coupon or production board used for the horizontal microsection shall be taken from the affected area and analyzed on the suspect layer(s).

Visual observations made on cross-sections only.
3.3 PLATED-THROUGH HOLES – GENERAL

3.3.1 Annular Ring – Internal Layers

Target Condition - Class 1, 2, 3
• All holes accurately registered in center of a land.

Acceptable - Class 3
• Annular ring measures 0.025 mm (0.000984 in) or more.

Acceptable - 2
• Annular ring has 90° breakout or less.

Acceptable – Class 1
• Annular ring has 180° breakout or less

Visual observations made on cross-sections only.

November 1999
3.3 PLATED-THROUGH HOLES – GENERAL

3.3.2 Lifted Lands – (Cross-Sections)

Target Condition – Class 1, 2, 3
• No lifting of lands.

Acceptable - Class 1, 2, 3
After thermal stress testing or rework simulation:
• Lifted lands are allowed.

As received (meaning after fusing, but prior to thermal stress testing or rework simulation):
• No lifting of lands.

Nonconforming - Class 1, 2, 3
• No lift allowed from the laminate surface plane to the bottom surface at the end of the copper land, whether or not resin appears on the copper land off the board.

Visual observations made on cross-sections only.
3.3 PLATED-THROUGH HOLES – GENERAL

3.3.3 Plating Crack - (Internal Foil)

Target Condition – Class 1, 2, 3
• No cracks in foil.

Acceptable – Class 2, 3
• No evidence of cracks in foil.

Acceptable – Class 1
• Allowed on one side of hole only and shall not extend through foil thickness.

Nonconforming – Class 1, 2, 3
• Crack extends through foil thickness.

Visual observations made on cross-sections only.
**3.3.4 Plating Crack**

**Target Condition – Class 1, 2, 3**
- No cracks in foil.

**Acceptable – Class 2, 3**
- Crack A

**Acceptable – Class 1**
- Cracks A and B
- Crack C on only one side of hole provided it does not extend through foil thickness.

**Nonconforming – Class 1, 2, 3**
- Crack C and D

*Note:* “A” Crack is a crack in external foil.
“B” Crack is a crack that does not completely break plating (minimum plating remains).
“D” Crack is a complete crack through external foil and plating.

Visual observations made on cross-sections only.
3.3 PLATED-THROUGH HOLES – GENERAL

3.3.5 Plating Crack – (Barrel)

Target Condition – Class 1, 2, 3
• Barrel plating is free of cracks.

Acceptable - Class 1, 2, 3
• No cracks in plating.

Nonconforming – Class 1, 2, 3
• Defects exceed above criteria.

Nonconforming - Class 1, 2, 3
• Defects exceed above criteria.

Visual observations made on cross-sections only.
Target Condition – Class 1, 2, 3

- No cracks in plating.

Acceptable – Class 1, 2, 3

- No cracks in plating.

Nonconforming – Class 1, 2, 3

- Defects exceed above criteria.

Nonconforming - Class 1, 2, 3

- Defects exceed above criteria.

Visual observations made on cross-sections only.
3.3 PLATED-THROUGH HOLES – GENERAL

3.3.7 Plating Nodules

**Target Condition – Class 1, 2, 3**
- Plating is smooth and uniform throughout the hole. No evidence of roughness or nodules.

**Acceptable – Class 1, 2, 3**
- Roughness or nodules do not reduce plating thickness below absolute minimum requirements or hole diameter below minimum requirements.

**Nonconforming – Class 1, 2, 3**
- Roughness or nodules reduce absolute plating thickness below minimum requirements. Roughness or nodules reduce finished hole size below minimum requirements.

Visual observations made on cross-sections only.
3.3 PLATED-THROUGH HOLES – GENERAL

3.3.8 Copper Plating Thickness – Hole Wall

Target Condition – Class 1, 2, 3
• Plating is smooth and uniform throughout the hole. Plating thickness meets requirements.

Acceptable – Class 1, 2, 3
• Plating thickness varies but meets minimum average requirements and minimum thin area requirements.

Nonconforming – Class 1, 2, 3
• Plating thickness below either minimum thin area requirements or minimum average requirements.

Note: See IPC-TM-650, Method 2.1.1 for measurement method. Visual observations made on cross-sections only.
### 3.3.9 Plating Voids

**Target Condition – Class 1, 2, 3**
- Hole is free of voids.

**Acceptable - Class 1, 2, 3**
- There shall be no plating void in excess of 5 percent of the total printed wiring board thickness.
- There shall be no plating voids evident at the interface of an internal conductive layer and plated hole wall.
- Circumferential plating voids are not allowed.

**Acceptable - Class 2, 3**
- There shall be no more than one plating void per test coupon or production board, regardless of length or size.

**Acceptable – Class 1**
- There shall be no more than three plating void per test coupon or production board, regardless of length or size.

**Nonconforming - Class 1, 2, 3**
- Plating void in excess of 5 percent of the total printed wiring board thickness.
- Plating voids evident at the interface of an internal conductive layer and plated hole wall.
- Circumferential plating voids.

**Nonconforming - Class 2, 3**
- More than one plating void per test coupon or production board, regardless of length or size.

**Nonconforming - Class 1**
- More than three plating voids per test coupon or production board, regardless of length or size.

Visual observations made on cross-sections only.
3.3.10 Solder Coating Thickness (When Specified)

Target Condition – Class 1, 2, 3
• Solder coating thickness is uniform and covers etched land edge. Exposed copper is not evident.

Acceptable – Class 1, 2, 3
• Solder coating thickness is uniform. Vertical (conductor and land) areas may not be covered. No exposed copper is evident.

Nonconforming – Class 1, 2, 3
• Exposed copper is evident.

Note: For solderability requirements, see 5.1.

Visual observations made on cross-sections only.
3.3 PLATED-THROUGH HOLES – GENERAL

3.3.11 Wicking

Target Condition – Class 1, 2, 3
• No wicking present.

Acceptable – Class 3
• Wicking does not exceed 0.08 mm [0.0031 in].

Acceptable – Class 2
• Wicking does not exceed 0.10 mm [0.00394 in].

Acceptable – Class 1
• Wicking does not exceed 0.125 mm [0.004921 in].

Nonconforming – Class 1, 2, 3
• Defects exceed above criteria.

Visual observations made on cross-sections only.
3.3 PLATED-THROUGH HOLES – GENERAL

3.3.11.1 Wicking, Clearance Holes

**Target Condition – Class 1, 2, 3**
- No wicking of conductive material into base material or along the reinforcement material.

**Acceptable – Class 3**
- Wicking (A) is less than or equal to 0.08 mm [0.0031 in].
- Wicking (B) does not reduce conductor spacing less than specified minimum on the procurement documentation.

**Acceptable – Class 2**
- Wicking (A) is less than or equal to 0.1 mm [0.0040 in].
- Wicking (B) does not reduce conductor spacing less than specified minimum on the procurement documentation.

**Acceptable – Class 1**
- Wicking (A) is less than or equal to 0.125 mm [0.004921 in].
- Wicking (B) does not reduce conductor spacing less than specified minimum on the procurement documentation.

**Nonconforming – Class 1, 2, 3**
- Defects exceed above criteria.

Visual observations made on cross-sections only.
3.3 PLATED-THROUGH HOLES – GENERAL

3.3.12 Innerlayer Separation – Vertical (Axial) Microsection

Target Condition – Class 1, 2, 3
• Direct bond of plated copper to copper foil. No evidence of innerlayer separation (separation between internal lands and plating of the hole wall) or innerlayer inclusions.

Acceptable - Class 2, 3
• No separation evident.

Acceptable – Class 1
• Innerlayer separation or innerlayer inclusions on only one side of hole wall at each land location on no more than 20% of available lands.

Nonconforming - Class 1, 2, 3
• Defects exceed above criteria.

Visual observations made on cross-sections only.
3.3 PLATED-THROUGH HOLES – GENERAL

3.3.13 Innerlayer Separation – Horizontal (Transverse) Microsection

**Target Condition – Class 1, 2, 3**
- No separation between the internal layer and plating in the hole. Direct bond of plated copper to layer foil copper. Line of demarcation caused by preferential etching of electroless copper deposit.

**Acceptable – Class 2, 3**
- No separation evident.

**Acceptable – Class 1**
- Slight line of demarcation and localized minor innerlayer separation that does not exceed specified requirements.

**Nonconforming – Class 1, 2, 3**
- Defects exceed above criteria.

Visual observations made on cross-sections only.
3.3 PLATED-THROUGH HOLES – GENERAL

3.3.14 Resin Fill

Blind via holes should be filled or plugged with a polymer or solder resist to prevent solder from entering them as solder in the small holes tends to decrease reliability. Incomplete via fill may result in board delamination due to the rapid expansion of entrapped air pockets or flux contaminants during solder reflow processes. Buried vias shall be at least 60% filled with the laminating resin for Class 2 and Class 3. They may be completely void of resin for Class 1.

Visual observations made on cross-sections only.
This section identifies the acceptability characteristics for drilled plated-through holes. Although only two characteristics are identified (burrs and nailheading), good drilling is essential for a good plated-through hole. The drilled hole wall should be smooth and free of burrs, delamination, burning, crushed insulation, and protruding fibers. The hole should be perpendicular, round and not tapered. A poorly drilled hole may cause other problems that have been described and characterized in other sections of this document. These problems are:

- Rough plating
- Nodules
- Plating voids
- Thin plating
- Plating cracks (hole wall, corner)
- Wicking (excessive)
- Hole size reduction
- Pink ring
- Blow holes in soldering
- Skip plating

The physical appearance of a particular hole will be affected by one or more of the following variables:

- Drill point angle
- Drill rotation speed
- Drill feed rate
- Drill sharpness

Nailheading is a condition which may develop during the drilling operation. Worn drills, improper speeds and feeds, and/or soft back up and entry materials usually cause nailheading. The condition is acceptable for all classes.

Visual observations made on cross-sections only.
3.4 PLATED-THROUGH HOLES – DRILLED

3.4.1 Burrs

Target Condition – Class 1, 2, 3
• No evidence of burrs.

Note: Burrs are acceptable for all classes provided they do not reduce hole diameter or plating thickness below required minimums.

Acceptable – Class 1, 2, 3
• Burrs present, but hole meets minimum diameter.

Nonconforming – Class 1, 2, 3
• Burrs reduce hole below minimum diameter.

Visual observations made on cross-sections only.
3.4 PLATED-THROUGH HOLES – DRILLED

3.4.2 Nailheading

Target Condition – Class 1, 2, 3
• No evidence of nailheading.

Acceptable – Class 1, 2, 3
• Slight evidence of nailheading.

Acceptable – Class 1, 2, 3
• Moderate evidence of nailheading providing there is no evidence of separation.

Visual observations made on cross-sections only.
The figures below depict a punched hole and a punched and plated hole in a reinforced laminate. The figures show the characteristics which may be exhibited in a punched hole. Punched holes may appear different than drilled holes. Drilled holes have straight wall geometry while the geometry of punched holes will vary from straight to those seen in the figures. The difference in the hole characteristics are attributed to:

- Laminate type and thickness
- Thickness and type of cladding
- Design of punch and die
- Tool maintenance
- Processing techniques

The laminate type is very important in determining its punchability. Laminates in which all the base material is woven fabric are difficult to punch. The composite materials utilizing a woven fabric top and bottom sheet and a random fiber internal mat are easily punched and the straight wall geometry of the drilled hole can be approached. Punch and die clearance and sharpness are also important when a straight wall is desired and a small flare is required. The amount of flare, foil burr, foil intrusion, laminate bulge, and laminate rollover seen in the figures do not necessarily degrade the plated-through hole quality and are acceptable for all classes provided other requirements are in compliance with the performance specifications and the engineering description.

Although burrs and fibers can also be associated with the straight wall geometry of a drilled hole, the concepts of flare and intrusion relate specifically to punched hole formation techniques. An intrusion of copper foil within the punched hole can result from excessive punch-to-die clearance or a dull punch. Tapered flare or breakout is a normal condition on the exit side of a punched hole and may be caused by the stress generated within the laminate during hole formation. The degree of flare can be controlled through variations in punch-to-die clearance and other operating parameters.

Visual observations made on cross-sections only.
3.5 PLATED-THROUGH HOLES – PUNCHED

3.5.1 Roughness and Nodules

**Target Condition — Class 1, 2, 3**
- Plating is smooth and uniform throughout the hole. No evidence of roughness or nodules.

**Acceptable — Class 1, 2, 3**
- Roughness or nodules do not reduce plating thickness or hole diameter below minimum requirements.

**Nonconforming — Class 1, 2, 3**
- Roughness or nodules reduce plating thickness or hole diameter below minimum requirements.

Visual observations made on cross-sections only.
3.5 PLATED-THROUGH HOLES – PUNCHED

3.5.2 Flare

Target Condition – Class 1, 2, 3
• Hole exhibits only slight flare and does not violate minimum annular ring requirements.

Acceptable – Class 1, 2, 3
• Hole exhibits flare but it does not violate minimum annular ring requirements.

Nonconforming – Class 1, 2, 3
• Hole exhibits flare that violates the minimum annular ring requirements.

Visual observations made on cross-sections only.
4.0 MISCELLANEOUS

Introduction

This section provides acceptability criteria for several special printed board types. The distinctive features of these special board types require supplementing the general acceptability criteria. For each special board type, this section outlines where and how the general acceptability criteria are supplemented. The special board types are:

- Flexible
- Rigid-Flex
- Metal Core
- Flush

4.1 FLEXIBLE AND RIGID-FLEX PRINTED WIRING

Introduction

This section covers the acceptability requirements specific to flexible and rigid-flex printed wiring. Parameters not covered in this section are to be evaluated using the other sections of this document.

The numeric type designator for flexible and rigid-flex printed wiring differs from that of rigid printed boards. The various types for flexible and rigid-flex printed wiring are defined as follows:

Type 1. Single-sided flexible wiring containing one conductive layer with or without stiffeners.

Type 2. Double-sided flexible printed wiring containing two conductive layers with plated-through holes with or without stiffeners.

Type 3. Multilayer flexible printed wiring containing three or more conductive layers with plated-through holes with or without stiffeners.

Type 4. Multilayer rigid and flexible material combinations containing three or more layers with plated-through holes.

Type 5. Flexible or Rigid-Flex printed wiring containing two or more conductive layers without plated-through holes.

The types referred to in this section on flexible and rigid-flex printed wiring will use the definitions above.

The physical requirements for Folding Flexibility and Flexibility Endurance are not described in this document. If required by the procurement documentation, refer to IPC-6013 for details.
4.1 FLEXIBLE AND RIGID-FLEX PRINTED WIRING

4.1.1 Coverfilm Separations

The coverfilm shall be uniform and free of separations; however imperfections such as wrinkles, creases, and nonlamination are acceptable provided they do not exceed the limits below and foreign inclusions are per this document.

**Target Condition – Class 1, 2, 3**

- No delamination.

**Acceptable – Class 1, 2, 3**

- Delamination does not reduce laminated area between adjacent conductors by more than 25%.
- The area of each delamination does not exceed 6.25 square mm [0.2460 sq. in].
- Delamination does not occur along the outer edges.

**Nonconforming - Class 1, 2, 3**

- Defects exceed above criteria.
4.1 FLEXIBLE AND RIGID-FLEX PRINTED WIRING

4.1.2 Coverlayer Coverage

The covercoat coverage shall have the same requirements as the solder resist (solder mask) coatings in the rigid board section of this document. The coverfilm coverage including squeeze-out of adhesive over the solderable land area follow:

Target Condition – Class 1, 2, 3
- No unwanted material on land area.

Acceptable – Class 3
- A minimum solderable annular ring of 0.13 mm [0.00512 in] for the full circumference.

Acceptable – Class 2
- A solderable annular ring for at least 270° of the circumference.

Acceptable – Class 1
- A solderable annular ring for at least 180° of the circumference.
Registration of the coverlayer and/or stiffener shall allow for a solderable annular ring around the hole and adhesive or squeeze-out shall not reduce the solderable annular ring below acceptable limits. In cases where anchoring spurs are attached to the lands, they shall be lapped by the coverlayer.

**Target Condition – Class 1, 2, 3**
- Meets nominal registration.

**Acceptable – Class 3**
- Coverlayer or stiffener does not extend into the hole.
- A solderable annular ring of 0.13 mm [0.00512 in] or more for the full circumference.
- For unsupported holes, a solderable annular ring of 0.25 mm [0.00984 in].

**Acceptable – Class 2**
- Coverlayer or stiffener does not extend into the hole.
- A solderable annular ring for 270° or more of the circumference.

**Acceptable – Class 1**
- Coverlayer or stiffener does not extend into the hole.
- A solderable annular ring for 180° or more of the circumference.

**Nonconforming - Class 1,2,3**
- Defect exceeds above criteria.

The plating thickness for flexible and flex-rigid printed boards are different than rigid boards. The plating thicknesses are established in IPC-6013. The following photos depict a Type 2 flex printed wiring.
4.1 FLEXIBLE AND RIGID-FLEX PRINTED WIRING

4.1.4 Plated Hole Criteria

Target Condition – Class 1, 2, 3
• Plating is uniform and meets the minimum thickness requirements.
• No defects of the plating or base material present.

Acceptable – Class 1, 2, 3
• Minor defects present but meet the minimum requirements:
  a. Slight deformation of base material and minor smear.
  b. Adhesive or dielectric filament with small nodule, but copper thickness meets minimum requirements.
  c. Localized thin and nonuniform plating; copper slightly thin over one corner and minor extrusion of base material, but copper thickness meets minimum requirements.

Nonconforming – Class 1, 2, 3
• Major and/or excessive defects present:
  a. Adhesive filament causing crack in plating.
  b. Excessive nodule, extrusion and deformation of base material which violates minimum hole size requirements.
  c. Thin plating, less than the minimum requirement.
  d. Circumferential void.
4.1 FLEXIBLE AND RIGID-FLEX PRINTED WIRING

4.1.5 Stiffener Bonding

The stiffener is evaluated for mechanical support only. Void-free bonding of the stiffener to the flexible printed wiring is not required.

Acceptable – Class 1, 2, 3

• Mechanical support is required; void-free bonding is not required.
• The stiffener or adhesive used to bond the stiffener does not reduce the solderable annular ring below the minimum solderable annular ring requirements.
• Peel strength of the bond is a minimum of 0.055 kg/mm width when tested as follows:

Test method: Using a sharp instrument such as a scalpel or razor blade, cut approximately 10 mm [0.394 in] wide by 80 mm [3.15 in] long through the flexible wiring to the stiffener so that approximately half way through the peeling operation the sample will be perpendicular to the pull. Pull at a rate of 50 ± 6.3 mm/minute. Take readings at the beginning, middle, and end of the pull, and average the reading for acceptability. The peel strength between the flexible wiring and the stiffener shall be a minimum of 0.055 kg/mm width.
The transition zone is the area centered at the edge of the rigid portion from which the flexible portion extends. The inspection range is limited to 3 mm [0.12 in], about the center of the transition, which is the edge of the rigid portion. Visual imperfections inherent in the fabrication technique, i.e., adhesive squeeze-out, localized deformation of dielectric or conductors, protruding dielectric material are acceptable.
Solder wicking or other plating migration does not extend into the bend or flex transition area and meets the conductor spacing requirements. Solder wicking or other plating migration does not exceed the limits specified in the table.

**Target Condition – Class 1, 2, 3**
- Solder or plating on land covers all exposed metal and stops at coverlayer.

**Acceptable – Class 3**
- Solder wicking/plating migration does not extend under coverlayer more than 0.3 mm [0.0012 in].

**Acceptable – Class 2**
- Solder wicking/plating migration does not extend under coverlayer more than 0.5 mm [0.020 in].

**Acceptable – Class 1**
- As agreed upon between user and supplier.
This section shows the voids and cracks that may be present in flexible or rigid-flex printed wiring. The requirements for the flexible printed wiring portion differs from the rigid-flex printed wiring and is defined in the text even though only a rigid-flex section is shown.

**Notes:**
1. The thermal zone extends 0.08 mm [0.0031 in] beyond land edge that is most radially extended.
2. Laminate defects in Zone A areas are not evaluated on specimens which have been exposed to thermal stress or rework simulation.
3. Multiple voids or cracks between plated-through holes and in the same plane shall not have combined length exceeding the limit.

**Target Condition**
- No laminate voids or cracks.
4.1 FLEXIBLE AND RIGID-FLEX PRINTED WIRING

4.1.8.1 Laminate Integrity - Flexible Printed Wiring

**Target Condition**
- No laminate voids or cracks.

**Acceptable - Class 1, 2, 3**
- Laminate voids or cracks are not evaluated in Zone A.
- Laminate voids or cracks in flexible printed wiring do not exceed 0.50 mm [0.0020 in] in Zone B.

**Notes:**
1. The thermal zone extends 0.08 mm [0.0031 in] beyond land edge that is most radially extended.
2. Multiple voids or cracks between plated-through holes and in the same plane shall not have combined length exceeding the limits for all classes.
Target Condition

- No laminate voids or cracks.

Acceptable - Class 2, 3

- Laminate voids or cracks are not evaluated in Zone A.
- Laminate voids or cracks in rigid printed wiring are not in excess of 0.08 mm [0.0020 in] in Zone B.
- Laminate voids or cracks in flex printed wiring are not in excess of 0.5 mm [0.0020 in] in Zone B.

Acceptable - Class 1

- Laminate voids are not evaluated in Zone A.
- Laminate voids or cracks in rigid-flex printed wiring are not in excess of 0.15 mm [0.00591 in] in Zone B.

Notes:
1. The thermal zone extends 0.08 mm [0.0031 in] beyond land edge that is most radially extended.
2. Multiple voids or cracks between plated-through holes and in the same plane shall not have combined length exceeding the limits for all classes.
When specified in the procurement documentation, flexible printed wiring and rigid-flex printed wiring shall be etched back by the lateral removal of resin and fibers from the drilled hole prior to plating. The etchback shall be between 0.003 mm [0.00012 in] and 0.08 mm [0.0031 in]. Shadowing is permitted on one side of each land.

*Note:* Due to various materials used in the construction of rigid-flex printed wiring, varying degrees of preferential etchback is exhibited among the various materials.
Smear removal is the removal of debris that results from the formation of the hole. Smear removal should be sufficient to completely remove resin from the surface of conductor interface. The smear removal process shall not etch back more than 0.05 mm [0.0020 in]. Random tears or gouges that produce small areas where the 0.05 mm [0.0020 in] depth is exceeded are acceptable provided dielectric spacing is maintained.
The trimmed edge of the flexible printed wiring or the flexible section rigid-flex printed wiring shall be free of burrs, nicks, delamination, or tears in excess of that allowed in the procurement documentation. Minimum edge to conductor shall be specified in the procurement documentation.

**Target Condition - Class 1, 2, 3**
- Free of nicks and tears. Minimum edge to conductor spacing maintained.
- The trimmed edge of the flexible printed wiring or the flexible section of finished rigid-flex printed wiring is free of burrs, nicks, delamination, and tears.

**Acceptable - Class 1, 2, 3**
- No nicks or tears in excess of that specified in the procurement documentation.
- Nicks and tears that occur as a result of tie-in tabs to facilitate circuit removal shall be as agreed on by the user and supplier.
- Edge to conductor spacing of the flexible portion is within requirements specified on the procurement documentation.
- Nicks or haloing along the edges of the flexible printed wiring, cutouts, and unsupported holes, providing the penetration does not exceed 50% of the distance from the edge to the nearest conductor or 2.5 mm [0.0984 in], whichever is less.

**Acceptable - As agreed by user and supplier**
- When nicks and tears occur as a result of tie-in tabs to facilitate circuit removal, the extent of these imperfections do not exceed the requirements agreed to by user and supplier.
There are two types of metal core boards, both having one or more conductive patterns on each side of an insulated metal substrate. Interconnection between conductive patterns is made with plated-through holes.

In the first type, for double-sided boards, the metal core is laminated on each side with single-sided copper clad laminate to form a two-sided board with the conductors subsequently etched and plated by conventional printed board processes. For multilayer applications, additional etched internal layers may be laminated to the core or multiple cores. The cores may serve as a heat sink, a power or ground plane, or as a constraining plane to decrease the coefficient of thermal expansion (CTE) of the board in the planar direction.

For this type, the cores are commonly aluminum, copper, or (for CTE control), copper clad invar or molybdenum. If the cores are not to be electrically connected to the circuitry (as is normally the case with aluminum cores), clearance holes for plated-through holes are drilled or punched prior to lamination and filled with an insulating material. Copper cores may be electrically connected through the plated-through hole. However, copper clad invar or molybdenum requires special processing to make acceptable electrical connections.

In the second type of metal core board, clearance holes are drilled, punched or machined in the bare core and it is then coated with an insulating material by spray coating, electrophoretic processes, or fluidized bed techniques. The coating must be pinhole free and of the specified thickness required to withstand electrical leakage and arc-over. After coating, the insulation is covered with electroless copper and plated and etched to provide required surface conductors and plated-through holes. For this type, the core may be copper, aluminum or steel, and most often acts as a heat sink or stiffener.
4.2 METAL CORE PRINTED BOARDS

4.2.1 Type Classifications

**Metal Core Board Types**

**Laminated Type Metal Core Board**
- Single conductive layer on both sides and insulated from the metal core substrate. Conductive material to be copper foil and electrodeposited copper.

**Laminated Type Metal Core Multilayer Board**
- More than one conductive layer on one or both sides and insulated from the metal core substrate. Conductive material to be copper foil and electrodeposited copper.

**Insulated-Metal-Substrate Metal Core Board**
- Single conductive layer on both sides and insulated from the metal core substrate. Conductive material to be electroless copper and a copper flash is then applied over all surfaces. From this point on, document printed board fabrication processes are employed. This process is generally limited to double-sided boards only.
4.2 METAL CORE PRINTED BOARDS

4.2.2 Spacing Laminated Type

Target Condition – Class 1, 2, 3
• The spacing between the metal core and adjacent conductive surfaces exceeds 0.1 mm [0.0040 in].

Acceptable – Class 1, 2, 3
• The spacing between the metal core and the plated-through hole or the metal core and adjacent conductive surfaces is greater than 0.1 mm [0.0040 in].

Nonconforming – Class 1, 2, 3
• The spacing between the metal core and the plated-through hole or the metal core and adjacent conductive surface is less than 0.1 mm [0.0040 in].
### 4.2 METAL CORE PRINTED BOARDS

#### 4.2.3 Insulation Thickness, Insulated Metal Substrate

**Target Condition – Class 1, 2, 3**
- Insulation thickness exceeds requirements of the table below.

**Acceptable – Class 1, 2, 3**
- Insulation thickness meets requirements of the table below.

**Nonconforming – Class 1, 2, 3**
- Insulation thickness is less than minimum thickness of the table below.

---

<table>
<thead>
<tr>
<th>Description</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hole (minimum)</td>
<td>0.050 mm [0.0020 in]</td>
<td>0.025 mm [0.000984 in] - 0.065 mm [0.00256 in]</td>
<td>0.125 mm [0.004921 in]</td>
<td>0.125 mm [0.004921 in]</td>
</tr>
<tr>
<td>Surface (minimum)</td>
<td>0.050 mm [0.0020 in]</td>
<td>0.025 mm [0.000984 in] - 0.065 mm [0.00256 in]</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Knee** (minimum)</td>
<td>0.025 mm [0.000984 in]</td>
<td>0.025 mm [0.000984 in] - 0.065 mm [0.00256 in]</td>
<td>0.125 mm [0.004921 in]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*Applies to insulated-metal-substrate board only.
**Junction where the hole wall and surface meet.

- Process A – Spray Coating
- Process B – Electrophoretic Deposition
- Process C – Fluidized Bed Process
- Process D – Molding Process

---
4.2 METAL CORE PRINTED BOARDS

4.2.4 Insulation Material Fill, Laminated Type Metal Core

**Target Condition — Class 1, 2, 3**
- Insulation material fills the entire area between the plated-through hole and the metal core without any voids or areas of missing insulation.

**Acceptable — Class 1, 2, 3**
- Insulating material meets minimum thickness and dielectric spacing requirements. Voids or resin recession does not cause spacing to be less than acceptability requirements.

**Nonconforming — Class 1, 2, 3**
- The insulating material is less than minimum thickness or dielectric spacing requirements. Voids or resin recession exceeds acceptability requirements.
4.2 METAL CORE PRINTED BOARDS

4.2.5 Cracks in Insulation Material Fill, Laminated Type

Target Condition – Class 1, 2, 3
- There are no cracks in the insulating fill material.

Acceptable – Class 1, 2, 3
- Wicking, radial cracks, lateral spacing or voids in the hole-fill insulation material shall not reduce the electrical spacing between adjacent conductive surfaces to less than 100 µm [0.003937 in].
- Wicking and/or radial cracks shall not exceed 75 µm [0.00295 in] from the plated-through hole edge into the hole-fill.

Nonconforming - Class 1, 2, 3
- Defects exceed above criteria.
4.2.6 Core Bond to Plated-Through Hole Wall

Target Condition – Class 1, 2, 3
- Complete bond on both sides.

Acceptable – Class 3
- No evidence of interconnection separation.

Acceptable – Class 1, 2
- Interconnection separation not more than 20% of core thickness. If copper clad core is used it shall not have any separation in the copper portion of the interconnect.

Nonconforming – Class 1, 2, 3
- Defects exceed above criteria.
This section covers acceptability criteria for flush printed boards. In flush printed boards, the surfaces, holes and other parameters for acceptability are the same as in standard single- and double-sided printed boards. This section covers the additional parameters that are important to the evaluation of flush printed boards.

### 4.3 FLUSH PRINTED BOARDS

#### Introduction

The application of flush circuitry requires that the conductor surfaces and the base material be essentially in the same plane.

#### 4.3.1 Flushness of Surface Conductor

Target Condition – Class 1, 2, 3

- Conductor is flush to the base material or surrounding insulating material surface.

Acceptable – Class 1, 2, 3

- Conductor is not flush but meets the minimum requirements.

Nonconforming – Class 1, 2, 3

- Conductor is not flush to the base material or surrounding insulating material surface and does not meet the specified tolerance.
The purpose of this section is to assist the reader in better understanding the importance of correct handling procedures in order to avoid damage and contamination during cleanliness testing.

The following general rules minimize surface contaminants when handling printed boards:

1. Work stations should be kept clean and neat.
2. There should be no eating, drinking or use of tobacco products at the work station or other activities that are likely to cause contamination of the board surfaces.
3. Hand creams and lotions containing silicone should not be used since they could result in solderability and other processing problems. Specially formulated lotions are available.
4. Handling of boards by their edges is desirable.
5. Lint free cotton or disposable plastic gloves should be used when handling bare boards. Gloves should be changed frequently as dirty gloves can cause contamination problems.
6. Unless special racks are provided, stacking boards without interleaving protection should be avoided.

Cleanliness testing is used to determine organic or inorganic, and ionizable or nonionizable contaminants.

The following are examples of the more common contaminants found on printed boards:

1. Flux residues
2. Particulate matter
3. Chemical salt residues
4. Fingerprints
5. Corrosion (oxides)
6. White residues

Due to the destructive nature of contaminants, it is recommended that cleanliness requirements of applicable procurement documentation be adhered to.

The solvent resistivity shall be in accordance with IPC-6012 unless otherwise specified. The specimens shall be tested for ionic contamination in accordance with IPC-TM-650, Method 2.3.25 and 2.3.26.
5.1 SOLDERABILITY TESTING

Introduction

This section describes the methods and requirements for solderability testing. Solderability of printed boards verifies the state of the printed board expected during assembly. Solderability testing is performed on both the surface and plated-through holes. ANSI/J-STD-003 describes in detail the different solderability tests:

Test A – Edge Dip Test (for surface conductors and attachment lands only)

Test B – Rotary Dip Test (for plated-through holes, surface conductors and attachment lands, solder source side)

Test C – Solder Float Test (for plated-through holes, surface conductors and attachment lands, solder source side)

Test D – Wave Solder Test (for plated-through holes, surface conductors and attachment lands, solder source side)

Along with the solderability method, the user shall specify as part of the purchase order agreement, the required coating durability. The following are guidelines for determining the needed level of coating durability, not product performance classes. Accelerated aging and solderability testing shall be performed per ANSI/J-STD-003.

Coating Durability categories:

Category 1 – Minimum Coating Durability; intended for boards which will be soldered within 30 days from the time of manufacture and are likely to experience minimum thermal exposures.

Category 2 – Average Coating Durability; intended for boards likely to experience storage up to six months from the time of manufacture and moderate thermal or solder exposures.

Category 3 – Maximum Coating Durability; intended for boards likely to experience long storage (over six months) from the time of manufacture, and may experience severe thermal or solder processing steps, etc. It should be recognized that there may be a cost premium or delivery delay associated with boards ordered to this durability level.

The test specimen shall be a representative coupon, a portion of the printed wiring board being tested, or a whole board if within size limits, such that an immersion depth defined in the individual method is possible. Sample holes should be selected at random.
5.1 SOLDERABILITY TESTING

5.1.1 Plated-Through Holes

Target Condition –
Class 1, 2, 3
• Solder has risen in all plated holes.
• There is no nonwetted or exposed base metal.

Acceptable – Class 1, 2, 3
• Solder has risen in all plated holes.
• There are several plugged holes less than 1.5 mm [0.0591 in] diameter.

Nonconforming –
Class 1, 2, 3
• Solder does not rise completely through the hole.
• Exposed base material present.
Testing of multilayer boards is required per IPC-6010 series unless otherwise specified or agreed upon by the customer.

**Electrical Integrity:** Inspection for the electrical functionality of the multilayer printed boards consists of:

a. Checking continuity of all electrical conductors.
b. Verify absence of short circuits.

Most of the interconnections in the printed boards are within the board structure and are not subject to visual inspection. Functional testing must be performed to determine the electrical integrity of all interconnections of the multilayer printed boards.

Basically, these functional electrical tests consist of ensuring existence of electrical continuity between specified lands and absence of internal shorts between individual electrical networks and ground power planes of the printed board. There are numerous techniques used to perform such testing, varying from manual probing to sophisticated automated procedures.

**Continuity Testing:** For circuit continuity testing a voltage is applied to two lands which should be interconnected and the presence or absence of current flow observed. The absence of current flow indicates an open circuit and a nonconformance. This process is repeated sequentially until all interconnections existing on a given board have been tested. Some specifications require a specified minimum current when the circuit is tested.

**Internal Short Test:** Testing procedures for the determination of absence of internal shorts are similar to the procedures described above for continuity testing. In this case the voltage is applied to a given internal ground plane, power plane or electrical network and all other lands are probed in sequence by applying voltage to them. A current flow between the energized land and the plane or network under test indicates an internal short and a nonconformance. This procedure is repeated for all internal planes and networks and all terminal areas of the multilayer board. Some specifications require that the testing for absence of shorts be performed by application of a high voltage source between the plane and terminal areas of 250 volts to 1000 volts (so called Hi-Pot testing) and note the absence of breakdown or flash-over. Some specifications specify a minimum resistance value which must exist between the unconnected lands and a given internal plane of the board. In such cases a suitable Megohm meter is used to perform the testing.
**Standards**

**IPC-2221**  
**Generic Standard on Printed Board Design**  
Establishes the major requirements for the design of organic printed boards and other forms of component mounting or interconnecting structures. Key concepts in this document are: Current carrying capacity charts; electrical conductor spacing requirements; and considerations for bare board test and in-circuit test. Released February 1998.  
Member Price: $25  
Nonmember Price: $50

**IPC-6012A**  
**Qualification and Performance Specification for Rigid Printed Boards**  
(with IPC-6011, supersedes IPC-RB-276)  
This specification covers qualification and performance of rigid printed boards. The printed board may be single-sided, double-sided, with or without plated-through holes, multilayer with or without buried/blind vias and metal core boards. Covers finishes, plating, traces, holes/vias, electrical, mechanical and environmental requirements. For use with IPC-6011. 27 pages. Released July 1996.  
Member Price: $20  
Nonmember Price: $40

**IPC-SM-782A**  
**Surface Mount Land Patterns (Configurations and Design Rules)**  
This document provides component package descriptions for all surface mount components and defines optimized land geometries to ensure sufficient solder fillets. Also includes Amendment 2 covering BGA components. Released April 1999.  
Member Price: $55  
Nonmember Price: $110

**IPC-7711**  
**Rework of Electronic Assemblies (Supersedes IPC-R-700)**  
Covers procedures for reworking electronic assemblies, either as part of the manufacturing process or after the assemblies have been in the field. Prescribes the procedural requirements, tools, materials and methods to be used in removing and replacing conformal coatings, surface mount and through-hole components. Includes two years of updating service (subscription). 196 pages. Released February 1998.  
Member Price: $75  
Nonmember Price: $150

---

**Slide Sets/CDs**

**IPC-CD-605**  
**Printed Board Quality Evaluation CD Set**  
A CD collection identifying 230 important quality characteristics on bare printed wiring boards: laminate imperfections, drilling and hole cleaning problems, plating condition, plated-through hole characteristics, surface conductor and land conditions, solder masks, edge contacts, multilayer lamination, solderability, and many other miscellaneous characteristics.  
Member Price: $45  
Nonmember Price: $90

**IPC-VT-25-SS**  
**Slide Set**  
Contains (105) 35 mm slides used in Basic Multilayer Fabrication (above VT-25). Includes computer graphics, and sample microphotographs at each process step, to review the contents of the video, or create/supplement your own training program.  
Member Price: $150  
Nonmember Price: $200

**IPC-VT-30/31-SS**  
**Microsection: Evaluation**  
Videotape 1 begins with a recap of the qualities of a correctly prepared microsection and follows with an examination of appropriate evaluation equipment. Measurement of the plated-through hole, the various platings and the laminate is covered completely. A discussion of the role of etching in measurement is included. Videotape 2 includes a concentrated review of the various evaluation criteria of a microsection's plated-through hole, the various platings and laminates. A discussion of the role of etching and the effects of thermal stressing in some evaluations is included. The two-tape training package includes a Leader's Guide and Learner's Handbook.  
Member Price: $495  
Nonmember Price: $595

**IPC-CD-63**  
**Acceptability of Printed Boards**  
This extensive CD program contains over 800 high-res sample images covering 35 types of visually observable defects on bare printed boards. As a computer based training program utilizing interactive testing and automated recordkeeping with adjustable pass/fail rates, CD-63 improves your quality standards and allows students to accurately recognize visual defects and apply selected classes of requirements from the IPC-A-600E. An introductory video is included to demonstrate effective use of this learning tool.  
Member Price: $995  
Nonmember Price: $1295
Videos

IPC-VT-22  Introduction to PWB Fabrication
Designed for new employees in PWB fabrication. Explains the history and function of the printed circuit board in modern electronics. Provides a visual overview of a typical multilayer facility. Covers personal safety, drugs and alcohol, product handling issues, communication with supervisors, and personal attitude. Also explains typical business costs and the importance of the individual operator toward the success of each company.
Member Price: $275  Nonmember Price: $350

IPC-VT-23  Bare Board Handling
Explains the importance of each individual contribution to the success of the PWB manufacturing process. Provides an interactive format - allowing groups of operators to discuss the specific causes of scratches and fingerprints in their specific process. Question and answer sections encourage the groups to come up with their own solutions to prevent common handling defects. A valuable tool to help promote careful handling and reduce unnecessary defects.
Member Price: $225  Nonmember Price: $300

IPC-VT-25  Basic Multilayer Fabrication
A complete overview of each of the manufacturing processes for a conventional six layer, pin registered MLB. Explains innerlayer print and etch process, and outerlayer SMOBC. Includes action photography, computer graphics and sample microphotographs at each of the process steps. An important introductory video for all new employees who will benefit from an understanding of this process.
Member Price: $225  Nonmember Price: $300

IPC-VT-26  Double-Sided Board Fabrication
Visually explains each of the process steps in the double-sided, pattern plate, tin-lead reflow manufacturing process. Includes action photography, computer graphics and microphotographs at each of the process steps. An excellent introduction to the IPC Operator Awareness Series videos, covering each of the 18 individual processes explained in this series.
Member Price: $225  Nonmember Price: $300

IPC-VT-28  Microsection: Manual Preparation
Examines the procedure for preparing microsections using manual methods for the critical grinding and polishing steps. Provides complete discussion of the microsection process steps, including removing the coupon from the panel, thermal stressing, mounting, grinding, polishing, and etching the specimen. Training package includes a Leader's Guide and Learner's Handbook.
Member Price: $275  Nonmember Price: $350

IPC-VT-29  Microsection: Automatic Preparation
Examines the procedure for preparing microsections using automatic equipment for the critical grinding and polishing steps. Provides complete discussion of the microsection process steps, including removing the coupon from the panel, thermal stressing, mounting, grinding, polishing, and etching the specimen. Training package includes Leader's Guide and Learner's Handbook.
Member Price: $275  Nonmember Price: $350

IPC-VT-30/31  Microsection: Evaluation
Videotape 1 begins with a recap of the qualities of a correctly prepared microsection and follows with an examination of appropriate evaluation equipment. Measurement of the plated-through hole, the various platings and the laminate is covered completely. A discussion of the role of etching in measurement is included. Videotape 2 includes a concentrated review of the various evaluation criteria of a microsection’s plated-through hole, the various platings and laminates. A discussion of the role of etching and the effects of thermal stressing in some evaluations is included. The two-tape training package includes a Leader's Guide and Learner's Handbook.
Member Price: $495  Nonmember Price: $595

IPC-VT-81  Innerlayer Handling, Part 1: Incoming Inspection, Shearing, and Tooling/Registration
An explanation of the defects that can be caused by improper handling during incoming inspection, shearing, and tooling/registration. The purpose of each of these innerlayer fabrication processes is explained, and the correct procedure is demonstrated. Visual examples of acceptable and rejectable products are provided - illustrating the range of allowable variation.
Member Price: $225  Nonmember Price: $300
IPC-VT-82 Innerlayer Handling, Part 2: Pre-Image Cleaning
Explains three techniques: mechanical scrubbing, pumice scrubbing, and chemical cleaning. Visual examples of acceptable and rejectable conditions are provided, illustrating the range of allowable variation. Operators are shown how improper handling will affect the product immediately – and down the line. Pre-image cleaning may be the most critical processing step in the fabrication of multilayer boards – and perhaps the most neglected. It is important to understand the theory of the cleaning operation, and why it is essential to do it right.
Member Price: $225 Nonmember Price: $300

IPC-VT-83 Innerlayer Handling, Part 3: Resist Lamination
Addresses the problems of photoresist in a way that both new employees and experienced operators will understand and learn from. Includes setup for speed; pressure; heat; registration; typical factors that create exposure or resist adhesion problems; improper cleaning; contamination; fingerprints; oxidation; foreign particles. Addresses the effects of bubbles; wrinkles; scratches; gouges; dents; resist chips; and roller imperfections. Looks at the role of protective clothing; trimming; and visual inspection.
Member Price: $225 Nonmember Price: $300

IPC-VT-84 Innerlayer Handling, Part 4: Imaging (a & b)
Videotape 1 analyzes the theory of the print and etch innerlayer imaging operation and provides an overview of each of the processing steps in typical multilayer fabrication. Explains diazo and silver halide phototools, various tooling arrangements, light collimation and deflection, image enlargement, integrator theory, and the step tablet calibration process. Videotape 2 covers standard operating procedures, the importance of cleanliness and air filtration, the effects of dust and other airborne contaminants, protective clothing, fingerprint contamination, resist particles, preventive cleaning techniques, static problems and ionization theory, wear and tear on phototools and tooling holes, scratches in exposure surfaces, and the function of cover sheet.
Member Price: $450 Nonmember Price: $600

IPC-VT-85 Innerlayer Handling, Part 5: Developing
Explains the innerlayer developing process and the defects that can be created by improper handling, variations in machine setup, and chemistry. Reviews the effects of each of these conditions during further processing.
Member Price: $225 Nonmember Price: $300

IPC-VT-86 Innerlayer Handling, Part 6: Etch/Strip
Details the innerlayer etch/strip operations, focusing on four variables: solution chemistry, conveyor speed, spray pressure and temperature control. Provides the necessary background knowledge to help ensure that your operators understand all of the process fundamentals – and why it’s important to perform the operation correctly.
Member Price: $275 Nonmember Price: $350

Operator Awareness Videos

IPC-OA-101 Incoming Inspection of Laminates
Reviews each of the extensive tests for laminate integrity. Provides visual examples of laminate defects and explains their effect on board quality drying processing. Also demonstrates how to avoid damage to the laminate caused by improper handling.
Member Price: $225 Nonmember Price: $300

IPC-OA-102 PWB Material Preparation
Reviews the fundamentals of laminate shearing and finishing, as well as the complex effects and differences between baking for cure, stress-relief and moisture removal. Your operators will learn how stresses are fabricated into the panels during lamination; when a “stress relief” bake cycle is most desirable; what effect heating a laminate above its glass transition temperature has on the epoxy-resin; how the different thermal expansion coefficients of copper, glass and resin affect cool-down; when a moisture bake is performed – and on what kind of a laminate. The importance of proper shearing and edge finishing is emphasized. And the effects of loose fibers and other surface defects on photo-resist adhesion are illustrated with microphotography.
Member Price: $225 Nonmember Price: $300

IPC-OA-103 PWB Tooling and Registration
Explains each of the processes that utilize registration during printed board fabrication – and most of the common handling errors that can create misregistration during artwork layout, tooling, drilling, imaging, solder mask, and profiling. Additional subjects include datum systems for both slots and holes, artwork compensation and verification, also minimum annular ring. A complete understanding of the concepts of registration will enable your operators to help prevent those defects that result from the cumulative effects of handling errors and tolerance buildups.
Member Price: $225 Nonmember Price: $300
<table>
<thead>
<tr>
<th>IPC-OA-104</th>
<th>PWB Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explores the mechanics of the drilling process starting with tooling, entry and back-up materials, how to spot drill wear and how to identify the defects caused by drilling double-sided, copper-clad laminate: external burrs, nailheads and epoxy-resin smear. Provides a general overview of programming to give the operator an understanding of CNC drilling equipment. Also explains the importance of proper drill feed and speed rates to minimize heat and maximize throughput. The care and handling of drill bits is emphasized as well as checks for misregistration and missing holes.</td>
<td></td>
</tr>
<tr>
<td>Member Price: $225</td>
<td>Nonmember Price: $300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPC-OA-105</th>
<th>PWB Deburring</th>
</tr>
</thead>
<tbody>
<tr>
<td>This videotape visually demonstrates how burrs become plated-over, trap contaminants, weaken hole structure, cause cracked corners and break electrical continuity. Deburring machines require proper set-up to protect the thin copper foil from being worn away. Operators must learn to read strike patterns to determine the correct pressure of brush and back-up rolls against the panel. Conveyor speeds have to be adjusted to assure a shiny, oxidation-free panel, and holes that are free of drilling debris and fibers. In addition to covering the conventional deburring methods, this tape also demonstrates the Wet Vapor Honing and Electrochemical Deburring processes.</td>
<td></td>
</tr>
<tr>
<td>Member Price: $225</td>
<td>Nonmember Price: $300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPC-OA-106</th>
<th>PWB Electroless Copper Deposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A complete overview of the process – from manual systems to automatic – explaining each of the baths: cleaner, condition, microetch, predip, activator, acid dip, electroless, anti-tarnish, and forced-air drying. Also covers safety requirements and incoming inspection criteria; potential problems; filter and bath maintenance additions; rinse efficiency (both stagnant and cascade); agitation; heaters; drip time and drag-out; and waste treatment. Stresses the importance of controlling chemical concentration, dwell time, temperature, and pH. Concludes with a visual review of final inspection criteria, and laboratory analysis for thickness measurement, rate panel analysis, porosity, evenness, and defect samples.</td>
<td></td>
</tr>
<tr>
<td>Member Price: $225</td>
<td>Nonmember Price: $300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPC-OA-107</th>
<th>PWB Imaging - Dry-Film</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explains the basic steps in the imaging process: precleaning, lamination, exposure and development, how boards are scrubbed and cleaned, how oxidation is minimized and why this is important. Operators are trained to look for physical defects that prevent dry-film adhesion, such as: fingerprints, scratches, and other surface contamination. The importance of proper handling procedures is emphasized. Also demonstrates proper treatment of the photoresist after lamination and why ragged trimming of dry film edges can cause problems in the imaging process. Panel-to-film alignment and the proper inspection of phototools before development are two more ways your operators can prevent costly errors.</td>
<td></td>
</tr>
<tr>
<td>Member Price: $225</td>
<td>Nonmember Price: $300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPC-OA-108</th>
<th>PWB Imaging - Screen Print</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reviews the fundamentals of the Screen Print Imaging process, including: screen making; thermal and UV inks; balance between off-contract, floodbar, and squeegee pressures; also setup and adjustment of semi-automatic printers. Thoroughly illustrates common defects and inspection requirements, also cleanliness, safety considerations, and process documentation.</td>
<td></td>
</tr>
<tr>
<td>Member Price: $225</td>
<td>Nonmember Price: $300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPC-OA-109</th>
<th>PWB Pattern-Plating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reviews the fundamentals of both copper and tin/lead pattern-plating. Provides visual examples of potential problems and explains their effects on board quality during further processing. Also covers basic equipment – both manual and automatic; system upkeep; safety requirements; and associated quality assurance and testing procedures.</td>
<td></td>
</tr>
<tr>
<td>Member Price: $225</td>
<td>Nonmember Price: $300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPC-OA-110</th>
<th>PWB Resist Stripping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explores the chemistry and mechanics of all types of stripping processes – horizontal, vertical conveyorized and batch. Both the function and purpose of liquid and dry-film resists are visually demonstrated, and why resists must be completely removed before the etching process. Operator prevention of defects is stressed. Also reviews inspection criteria for each of the associated defects. The importance of proper handling and safety procedures are emphasized.</td>
<td></td>
</tr>
<tr>
<td>Member Price: $225</td>
<td>Nonmember Price: $300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPC-OA-111</th>
<th>PWB Etching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides a visual explanation of the alkaline etching process from beginning to end. Contents cover proper handling and safety precautions; chemical concentration; conveyor speeds; the effects of etchant temperatures; laboratory tests for specific gravity and pH; cross-section analysis; uneven spray pressures; ventilation control; rinsing; and preventive maintenance procedures. Some visual examples of overetching, underetching, bridges, broken circuits, nicks, pinholes, and other quality assurance and inspection examples are carefully examined.</td>
<td></td>
</tr>
<tr>
<td>Member Price: $225</td>
<td>Nonmember Price: $300</td>
</tr>
</tbody>
</table>
**APPLICABLE DOCUMENTS TO THE IPC-A-600**

<table>
<thead>
<tr>
<th>IPC-OA-112</th>
<th>PWB Edge-Board Contact Plating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explains the tab plating operation from taping to inspecting. Setup and adjustment, chemical concentrations, conveyor speed, rectifier controls, plating thickness, nickel underplate, gold adherence and reclamation. Cleaning, tape testing, safety considerations, as well as an overview of the physics and chemistry of the plating operation, are all explored in an easy to understand format.</td>
<td></td>
</tr>
<tr>
<td>Member Price: $225</td>
<td>Nonmember Price: $300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPC-OA-113</th>
<th>PWB Fusing &amp; Solder Coating/Leveling</th>
</tr>
</thead>
<tbody>
<tr>
<td>A review of each of the common fusing and solder leveling processes, including hot oil, infrared, vapor phase, and hot air leveling. Also provides visual examples of voids, dewetting blowholes, tin-lead silvers, and plugged holes. The tape discusses the causes of potential defects - and the important handling and safety procedures associated with each process. Proper coverage of plated-through holes at the knee is explained, also the formation and consequences of intermetallic growth on long-term storage and solderability.</td>
<td></td>
</tr>
<tr>
<td>Member Price: $225</td>
<td>Nonmember Price: $300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPC-OA-114</th>
<th>Solder Mask Dry-Film</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review the fundamentals of Dry-Film Solder Mask Process, including surface preparation, lamination, exposure, development, and curing. Visual examples of potential defects are examined for their effects on board quality during further processing. Proper handling procedures are demonstrated. Also covers associated safety, quality assurance and testing procedures.</td>
<td></td>
</tr>
<tr>
<td>Member Price: $225</td>
<td>Nonmember Price: $300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPC-OA-115</th>
<th>Solder Mask – Screen Print</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reviews the fundamental concepts of screen making; direct and indirect image application; surface preparation; screen printing; adjustment of off contact and squeegee pressure; and both thermal and UV curing. Also covers solder mask over bare copper, visual examples of potential defects are examined for their effects on board quality during further processing. Proper handling procedures are demonstrated, and associated safety, quality assurance and testing procedures are also reviewed.</td>
<td></td>
</tr>
<tr>
<td>Member Price: $225</td>
<td>Nonmember Price: $300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPC-OA-116</th>
<th>PWB Blanking Routing &amp; Beveling</th>
</tr>
</thead>
<tbody>
<tr>
<td>The advantages and disadvantages of each process are discussed. Visual examples of improper routing and blanking are provided. Also covered are tooling hole choices; the importance of proper alignment on tooling pins; the operator’s responsibility to salvage a misaligned board before it is blanked or routed; proper care and handling of boards; checking for die wear; the evolution from manual to computer controlled routing and the importance of beveling - how it’s done, and why it’s necessary.</td>
<td></td>
</tr>
<tr>
<td>Member Price: $225</td>
<td>Nonmember Price: $300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPC-OA-117</th>
<th>PWB Inspection: It’s Everyone’s Job</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reviews each process in the PWB manufacturing cycle, and examines the common defects that occur during each process. Over 60 major defects are illustrated in a thoughtful and entertaining format. Designed to emphasize the individual operator’s responsibility to recognize and prevent problems before they reach final inspection.</td>
<td></td>
</tr>
<tr>
<td>Member Price: $225</td>
<td>Nonmember Price: $300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPC-OA-118</th>
<th>Packaging, Shipment &amp; Storage of PWBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reviews the “invisible” problems that cause boards to fail during the assembly soldering operation, including: ionic contamination – where it comes from; the effects of fingerprints; the significance of gloves; proper cleaning, rinsing and complete drying; types and porosity of various sealing bags; mechanical protection; slip sheets; sulfur contamination; inventory control and the fundamentals of the reflow/fusing process – including the formation of the intermetallic compound, and its long-term effects. Also reviews each of the soldering defects caused by improper packaging and storage.</td>
<td></td>
</tr>
<tr>
<td>Member Price: $225</td>
<td>Nonmember Price: $300</td>
</tr>
</tbody>
</table>
The IPC-A-600 *Acceptability of Printed Boards* document has set the standard for PWB workmanship quality. The IPC-A-600 has become one of the most widely recognized and used documents ever published by IPC. Now, an industry-consensus training and certification program based on the IPC-A-600 is available to your company. The IPC-A-600 Training and Certification Program helps all segments of the electronics interconnection industry improve their understanding of printed board quality issues.

**HOW THE CERTIFICATION PROGRAM WORKS**

The program follows a train-the-trainer model. Companies involved in fabrication, assembly, or original equipment manufacturers (OEMs) enroll a representative in a twenty-hour training course at any IPC-A-600 Approved Certification Center. The training program provides a detailed review of the IPC-A-600 criteria and concludes with a qualifying examination. Passing the exam means that “IPC-A-600 Certified Instructor/Inspectors” receive instructional materials to use in “Worker Proficiency” training. The operator-level Worker Proficiency course is “modularized,” meaning that an Instructor/Inspector may teach the area(s) of the IPC-A-600 that are most relevant to the employees’ responsibilities.

**HOW TO REGISTER FOR INSTRUCTOR/INSPECTOR TRAINING**

Contact these IPC-A-600 Approved Certification Centers to find out when their Instructor/Inspector Training Courses will be offered. For further information about the IPC-A-600 Instructor/Inspector Training and Certification Program, contact Alexandra Curtis at 847/790-5377 or visit IPC on the web at www.ipc.org.

<table>
<thead>
<tr>
<th>Blackfox Training Institute</th>
<th>DELTA Quality &amp; Certification</th>
<th>EMPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>455 Weaver Park Rd., Suite 400 Longmont, CO 80501</td>
<td>Venligshedsvej 4 DK-2970 Hoersholm Denmark</td>
<td>714 North Senate Avenue Indianapolis, IN 46202-3112</td>
</tr>
<tr>
<td>(303) 684-0135 phone</td>
<td>(+45) 45 867722 phone</td>
<td>(317) 655-3673 phone</td>
</tr>
<tr>
<td>(303) 682-0094 fax</td>
<td>(+45) 45 865898 fax</td>
<td>(317) 655-3699 fax</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EPTAC Corporation</th>
<th>Microtek Laboratories</th>
<th>PIEK Training &amp; Organisational Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>71 Route 101A Amherst, NH 03031</td>
<td>1435 Allec Street Anaheim, CA 92805</td>
<td>Laan van Hovell tot Westerfler 13 NL 6411 EW Heerlen The Netherlands</td>
</tr>
<tr>
<td>(800) 643-7822 phone</td>
<td>(714) 999-1616 phone</td>
<td>(+31) 45 5712281 phone</td>
</tr>
<tr>
<td>(603) 673-7822 phone</td>
<td>(714) 999-1636 fax</td>
<td>(+31) 45 5740034 fax</td>
</tr>
<tr>
<td>(603) 673-8787 fax</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quality Technology Company</th>
<th>Robisan Laboratory Inc</th>
<th>Soldering Technology Intl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1161 Tower Road Schaumburg, IL 60173</td>
<td>6502 East 21st Street Indianapolis, IN 46219-2211</td>
<td>102 Tribble Drive Madison, AL 35758</td>
</tr>
<tr>
<td>(847) 884-1900 phone</td>
<td>(317) 353-6249 phone</td>
<td>(800) 858-0604 phone</td>
</tr>
<tr>
<td>(847) 884-7280 fax</td>
<td>(317) 917-2379 fax</td>
<td>(256) 461-9191 phone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(256) 461-9566 fax</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TCS</th>
<th>Trace Laboratories - Central</th>
<th>Trace Laboratories - East</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Cypress Road P.O. Box 139 Milford, NH 03055</td>
<td>1150 West Euclid Avenue Palatine, IL 60067</td>
<td>Five North Park Drive Hunt Valley, MD 21030</td>
</tr>
<tr>
<td>(800) 955-4842 phone</td>
<td>(847) 934-5300 phone</td>
<td>(410) 584-9099 phone</td>
</tr>
<tr>
<td>(603) 672-6918 fax</td>
<td>(847) 934-4600 fax</td>
<td>(410) 584-9117 fax</td>
</tr>
</tbody>
</table>
The purpose of this form is to keep current with terms routinely used in the industry and their definitions. Individuals or companies are invited to comment. Please complete this form and return to:

IPC
2215 Sanders Road
Northbrook, IL 60062-6135
Fax: 847 509.9798

☐ This is a **NEW** term and definition being submitted.
☐ This is an **ADDITION** to an existing term and definition(s).
☐ This is a **CHANGE** to an existing definition.

### Term Definition

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If space not adequate, use reverse side or attach additional sheet(s).

Artwork:  ☐ Not Applicable  ☐ Required  ☐ To be supplied
☐ Included: Electronic File Name: ________________

Document(s) to which this term applies: ________________

Committees affected by this term: ________________

### Office Use

<table>
<thead>
<tr>
<th>IPC Office</th>
<th>Committee 2-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Received: ________________</td>
<td>Date of Initial Review: ________________</td>
</tr>
<tr>
<td>Comments Collated: ________________</td>
<td>Comment Resolution: ________________</td>
</tr>
<tr>
<td>Returned for Action: ________________</td>
<td>Committee Action:  ☐ Accepted  ☐ Rejected  ☐ Accept Modify</td>
</tr>
<tr>
<td>Revision Inclusion: ________________</td>
<td></td>
</tr>
</tbody>
</table>

### IEC Classification

Classification Code • Serial Number

Terms and Definition Committee Final Approval Authorization:
Committee 2-30 has approved the above term for release in the next revision.
Name: ________________ Committee: IPC 2-30 Date: ________________
**Technical Questions**
The IPC staff will research your technical question and attempt to find an appropriate specification interpretation or technical response. Please send your technical query to the technical department via:
tel 847/509-9700  
fax 847/509-9798  
www.ipc.org  
e-mail: answers@ipc.org

**IPC World Wide Web Page www.ipc.org**
Our home page provides access to information about upcoming events, publications and videos, membership, and industry activities and services. Visit soon and often.

**IPC Technical Forums**
IPC technical forums are opportunities to network on the Internet. It's the best way to get the help you need today! Over 2,500 people are already taking advantage of the excellent peer networking available through e-mail forums provided by IPC. Members use them to get timely, relevant answers to their technical questions.

**TechNet@ipc.org**
TechNet forum is for discussion of technical help, comments or questions on IPC specifications, or other technical inquiries. IPC also uses TechNet to announce meetings, important technical issues, surveys, etc.

**ChipNet@ipc.org**
ChipNet forum is for discussion of flip chip and related chip scale semiconductor packaging technologies. It is cosponsored by the National Electronics Manufacturing Initiative (NEMI).

**ComplianceNet@ipc.org**
ComplianceNet forum covers environmental, safety and related regulations or issues.

**DesignerCouncil@ipc.org**
Designers Council forum covers information on upcoming IPC Designers Council activities as well as information, comment, and feedback on current design issues, local chapter meetings, new chapters forming, and other design topics.

**Roadmap@ipc.org**
The IPC Roadmap forum is the communication vehicle used by members of the Technical Working Groups (TWGs) who develop the IPC National Technology Roadmap for Electronic Interconnections.

**LeadFree@ipc.org**
This forum acts as a peer interaction resource for staying on top of lead elimination activities worldwide and within IPC.

**ADMINISTERING YOUR SUBSCRIPTION STATUS:**
All commands (such as subscribe and signoff) must be sent to listserv@ipc.org. Please DO NOT send any command to the mail list address, (i.e.<mail list> @ipc.org), as it would be distributed to all the subscribers.

Example for subscribing:  
To: LISTSERV@IPC.ORG  
Subject:  
Message: subscribe TechNet Joseph H. Smith

Example for signing off:  
To: LISTSERV@IPC.ORG  
Subject:  
Message: sign off DesignerCouncil

Please note you must send messages to the mail list address ONLY from the e-mail address to which you want to apply changes. In other words, if you want to sign off the mail list, you must send the signoff command from the address that you want removed from the mail list. Many participants find it helpful to signoff a list when travelling or on vacation and to resubscribe when back in the office.

**How to post to a forum:**
To send a message to all the people currently subscribed to the list, just send to <mail list>@ipc.org. Please note, use the mail list address that you want to reach in place of the <mail list> string in the above instructions.

Example:  
To: TechNet@IPC.ORG  
Subject: <your subject>  
Message: <your message>

The associated e-mail message text will be distributed to everyone on the list, including the sender. Further information on how to access previous messages sent to the forums will be provided upon subscribing.

For more information, contact Hugo Scaramuzza

tel 847/790-5312  
fax 847/509-9798  
e-mail: scarhu@ipc.org  
www.ipc.org/html/forum.htm
Education and Training
IPC conducts local educational workshops and national conferences to help you better understand emerging technologies. National conferences have covered Ball Grid Array and Flip Chip/Chip Scale Packaging. Some workshop topics include:

- Printed Wiring Board Fundamentals
- Troubleshooting the PWB Manufacturing Process
- Choosing the Right Base Material Laminate
- Acceptability of Printed Boards Designers Certification Preparation
- New Design Standards
- High Speed Design
- Design for Manufacturability
- Design for Assembly

IPC-A-610 Training and Certification Program
"The Acceptability of Electronic Assemblies" (ANSI/IPC-A-610) is the most widely used specification for the PWB assembly industry. An industry consensus Training and Certification program based on the IPC-A-610 is available to your company.

For more information on programs, contact John Riley
tel 847/790-5308 fax 847/509-9798
e-mail: rilejo@ipc.org www.ipc.org

IPC Video Tapes and CD-ROMs
IPC video tapes and CD-ROMs can increase your industry know-how and on the job effectiveness.

For more information on IPC Video/CD Training, contact Mark Pritchard
tel 505/758-7937 ext. 202 fax 505/758-7938
e-mail: markp@ipcvideo.com www.ipc.org

IPC Printed Circuits ExpoSM
IPC Printed Circuits Expo is the largest trade exhibition in North America devoted to the PWB industry. Over 90 technical presentations make up this superior technical conference.

Exhibitor information:
Contact: Jeff Naccarato
tel 630/434-7779
Registration information:
tel 847/790-5361
fax 847/509-9798
e-mail: registration@ipc.org

APEXSM / IPC SMEMA Council
Electronics Assembly Process Exhibition & Conference
APEX is the premier technical conference and exhibition dedicated entirely to the PWB assembly industry.

Exhibitor information:
Contact: Mary MacKinnon
tel 847/790-5386
Registration information:
APEX Hotline: tel 877/472-4724
cfax 847/790-5361
e-mail: apex2000@ipc.org

How to Get Involved
The first step is to join IPC. An application for membership can be found in the back of this publication. Once you become a member, the opportunities to enhance your competitiveness are vast. Join a technical committee and learn from our industry’s best while you help develop the standards for our industry. Participate in market research programs which forecast the future of our industry. Participate in Capitol Hill Day and lobby your Congressmen and Senators for better industry support. Pick from a wide variety of educational opportunities: workshops, tutorials, and conferences. More up-to-date details on IPC opportunities can be found on our web page: www.ipc.org.

For information on how to get involved, contact:
Jeanette Ferdman, Membership Manager
tel 847/790-5309 fax 847/509-9798
e-mail: JeanetteFerdman@ipc.org www.ipc.org
Our facility purchases, uses and/or manufactures printed wiring boards or other electronic interconnection products for our own use in a final product. Also known as original equipment manufacturers (OEM).

To help IPC serve your member site in the most efficient manner possible, please tell us what your facility does by choosing the most appropriate member category.

**What products make sale?**

- Turnkey
- SMT
- Chip Scale Technology
- Through-hole
- Mixed Technology
- BGA

**What is your company’s main product line?**

_____________________________________________________

**Name of Chief Executive**

Officer/President

**Please be sure to complete both pages of application.**
Application for Site Membership

Company Name

Street Address

City State Zip Country

Main Phone No. Fax

Primary Contact Name

Title Mail Stop

Phone Fax e-mail

Senior Management Contact

Title Mail Stop

Phone Fax e-mail

Please check one:

❑ $1,000.00 Annual dues for Primary Site Membership (Twelve months of IPC membership begins from the time the application and payment are received)

❑ $800.00 Annual dues for Additional Facility Membership: Additional membership for a site within an organization where another site is considered to be the primary IPC member.

❑ $600.00** Annual dues for an independent PCB/PWA fabricator or independent EMSI provider with annual sales of less than $1,000,000.00. **Please provide proof of annual sales.

❑ $250.00 Annual dues for Government Agency/University/not-for-profit organization

TMRC Membership

❑ Please send me information on Membership in the Technology Marketing Research Council (TMRC)

AMRC Membership

❑ Please send me information for Membership in the Assembly Marketing Research Council (AMRC)

Payment Information

Enclosed is our check for $______________

Please bill my credit card: (circle one)  MC AMEX VISA DINERS

Card No. ________________ Exp date ________________

Authorized Signature

Mail application with check or money order to: IPC Dept. 851-0117W P.O. Box 94020 Palatine, IL 60094-4020

Fax/Mail application with credit card payment to:

IPC 2215 Sanders Road Northbrook, IL 60062-6135

Tel: 847 509.9700 Fax: 847 509.9798

PLEASE ATTACH BUSINESS CARD OF OFFICIAL REPRESENTATIVE HERE
Standard Improvement Form

The purpose of this form is to provide the Technical Committee of IPC with input from the industry regarding usage of the subject standard. Individuals or companies are invited to submit comments to IPC. All comments will be collected and dispersed to the appropriate committee(s).

If you can provide input, please complete this form and return to:
IPC
2215 Sanders Road
Northbrook, IL 60062-6135
Fax 847.509.9798

1. I recommend changes to the following:
   ___ Requirement, paragraph number _________
   ___ Test Method number _________, paragraph number _________

   The referenced paragraph number has proven to be:
   ___ Unclear   ___ Too Rigid   ___ In Error
   ___ Other

2. Recommendations for correction:

   ___________________________________________________________
   ___________________________________________________________
   ___________________________________________________________
   ___________________________________________________________
   ___________________________________________________________

3. Other suggestions for document improvement:

   ___________________________________________________________
   ___________________________________________________________
   ___________________________________________________________
   ___________________________________________________________
   ___________________________________________________________

Submitted by:

Name

Company

Address

City/State/Zip

Telephone

E-mail

Date